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Preface

To use the fun buzzwords that every textbook has, a certain level of mathematical maturity
is assumed. Also assumed is an understanding of linear algebra at an introductory under-
graduate level. No familiarity with categories or abstract algebra is assumed. The book may
be better titled Intermediate Algebra, as its level of sophistication lies somewhere between
an undergraduate and graduate approach to algebra. Sections marked with ∗ are considered
optional : it is fairly safe to assume that no future sections will depend on them. There are
a few exceptions, see the reading guide for details.

It is also worth mentioning what this book is not. It is not a textbook. You won’t find any
practice problems here, nor any long or worked through examples (except in the abstract
view section). I will occasionally point the interested reader in the direction of such things,
but keep in mind that the other sources I reference in doing so may use a different notation
or approach than I do.

None of the ideas contained within this book were mine to begin with. Much of the book
is based off of Serge Lang’s Algebra [Lan05], a wonderful reference text that I suggest you
pick up yourself. Other inspirations include Nathan Jacobson’s Basic Algebra I [Jac09] for
the earlier sections (although I do somewhat hate that book), Steven Roman’s Advanced
Linear Algebra [Rom07], and the lectures of Lior Silberman [Sil23] and Kalle Karu. I am of
course also in debt to the many professors I’ve had so far in Algebra throughout my years of
education. In particular, it was Vinyak Vatsal who originally taught me the basics of algebra
(from that cursed Jacobson book), and Lior Silberman who taught me to see algebra in a
more unified way.

Finally, I would like to thank two other people. My friend Boris for doing his own version of
this, forcing me to stop procrastinating on this project. Second, I would like to thank Ben
Williams, both for his wonderful insights and advice over the past year, and for making me
install a spell checker. I’m sure there are still grammatical errors in this text that would
cause you to lose your mind slightly, but please know that I really did try to fix them1.

1Somehow, despite only being fluent in one language, I’m quite terrible at it.
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Reading Guide

This text is split into five sections, and is designed to (for the most part) be read in a linear
order.

The first section, foundations, consists only of the first chapter. It contains a collection of
basic results in mathematics which are required to understand any other chapter of this text,
along with an explanation of Zorn’s lemma. The first of these must be fully understood
before reading anything else, the second can be skipped at first and returned to whenever it
is needed.

The second section, basic algebra, consists of chapters 2 and 3. These introduce the reader
to two of the most fundamental objects in algebra; the group and ring respectively. Both of
these chapters are designed to be read in order, with the section on groups first. There is
one exception to the * means optional rule here, which is the final section of chapter 3 on
Chinese Remainder Theorem.

The third section, linear algebra, covers exactly what the title says, primarily from the
viewpoint of modules rather than vector spaces. It consists of two chapters, again designed
to be read in an entirely linear order. This section is also more difficult to understand than
the previous two.

The fourth section, the abstract view, details how to unify the concepts of the previous
chapters and view algebra in a more abstract way. This includes a sort of warm up chapter
on universal algebras, followed by the much more important topic of categories. The universal
algebras chapter can be skipped, as it won’t come up again, but it is rather short and may
be reading just out of interest. It also may be worth reading if you’ve had no exposure to
this level of abstraction before, as universal algebras are a bit more concrete than categories.
The last chapter on categories is complete as-is, but may have more material added to it
later (specifically on adjoints).

The final section, advanced algebra, contains chapters on a collection of topics which may be
encountered in an advanced undergraduate or introductory graduate course. These include
a chapter on field extensions and Galois theory, one on commutative algebra, and one on
homology. The chapter on Galois theory could be read before the previous section, as it
doesn’t really use categories. Only the first of these chapters has been written.
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Chapter 1

Foundations

Unfortunately, we cannot immediately jump into algebra without first having a strong un-
derstanding of some basic mathematical concepts. The first of these is a combination of
basic facts about prime numbers, factorization, and equivalence relations. These results will
be used immediately and frequently in our study of algebra, and you should have a firm
understanding of them before moving on. The second is an overview of Zorn’s lemma. This
will not be used until a fair bit into our studies, and can be skipped for now if desired. When
you come back to it, it is not essentially that you understand the proof of the lemma, just
how to apply it.1

1.1 Primes and Equivalence Classes

This section collects results from a similar one in [Jac09] (which is honestly one of his better
expository moments), and is here for your convenience. If you are not familiar with these
concepts to some degree already, please read the corresponding sections in [Jac09]. We start
with some very basic definitions.

Definition 1.1.1. Let a, b ∈ Z. We say that a divides b, or a is a divisor of b, denoted a | b,
if there exists some x ∈ Z such that b = az. We say that a number p ∈ Z is prime if its only
divisors are ±1,±p. By convention, we do not consider ±1 to be prime.

Note that if b | c and a | b, then a | c. Indeed, we use this fact to prove one of the most
fundamental theorems of mathematics.

Theorem 1.1.2 (Prime Factorization). Any number n ∈ N has a unique (up to order of
primes) representation in the form

n = pe11 · · · perr (1.1)

where pi ∈ N are prime, and ei ∈ N.

For a proof, see [Jac09] (and apply this statement to every part of this section).

1It is a good exercise in dealing with abstract concepts to understand it however.
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1.1. PRIMES AND EQUIVALENCE CLASSES CHAPTER 1. FOUNDATIONS

Definition 1.1.3. Let a, b ∈ Z\{0}. Then we define

1. A greatest common denominator GCD of a, b to be any number c ∈ Z such that c | a, b
and if d | a, b then d | c.

2. A least common multiple of a, b to be any number c ∈ Z such that if a, b | c and if
a, b | d then c | d.

Theorem 1.1.4. Let a, b ∈ Z\{0}. Let |a| = pe11 · · · perr , |b| = pf11 · · · pfrr be prime factoriza-
tions, where we allow ei, fi = 0. Set Mi = max(ei, fi),mi = min(ei, fi). Then

1. The GCDs of a, b are ±pm1
1 · · · pmrr .

2. The LCMs of a, b are ±pM1
1 · · · pMr

r .

Because of the above theorem, we usually denote the positive GCD/LCM by (a, b), [a, b].

Proposition 1.1.5. Let a, b ∈ N. Then

(a, b)[a, b] = ab

Theorem 1.1.6 (Division Algorithm). Suppose a, b ∈ Z, with b ̸= 0. Then there exists some
q, r ∈ Z such that 0 ≤ r < |b| and

a = qb+ r

Corollary 1.1.6.1 (Bézout’s identity). Suppose a, b ∈ Z are non-zero. Then there exist
m,n ∈ Z such that ma+ nb = (a, b) and

{ca+ db | c, d ∈ Z} = {c(a, b) | c ∈ Z}

Now, we move on to equivalence relations.

Definition 1.1.7. Let S be a set. A relation R on S is a subset of S × S. If (x, y) ∈ R, we
denote this by xRy.

Definition 1.1.8. Let S be a set. An equivalence relation ∼ on S is a relation satisfying
the following three axioms for all x, y, z ∈ S

1. x ∼ x (Symmetry)

2. x ∼ y ⇒ y ∼ x (Reflexivity)

3. x ∼ y, y ∼ z ⇒ x ∼ z (Transitivity)

Equivalence relations allow us to partition sets into what are called equivalence classes.

Definition 1.1.9. Let x ∈ S, and ∼ be an equivalence relation on S. The equivalence class
of x, denoted [x]∼ or just [x], is defined in the following manner.

[x] = {y ∈ S | x ∼ y}

2



CHAPTER 1. FOUNDATIONS 1.2. ZORN’S LEMMA

Proposition 1.1.10. [x] = [y] if and only if x ∼ y. The set S/ ∼ of equivalence classes in S
(called the quotient set of S) is therefore a partition of S, that is a division of S into disjoint
subsets whose union is S.

The map q : S → S/ ∼ defined by x 7→ [x] is called the quotient function. One can actually
go the other way as well.

Proposition 1.1.11. Let π ⊂ P(S) be a partition. Then there exists a unique equivalence
relation ∼ on S such that S/ ∼= π. In particular, this ∼ is defined by two elements being
equivalent if and only if they lie in the same set in the partition.

Finally, sufficiently well-behaved functions on S will induce unique maps on the quotient set.

Theorem 1.1.12. Suppose f : S → A is a mapping between sets, and ∼ is an equivalent
relation on S with quotient function q. If f is such that x ∼ y ⇒ f(x) = f(y), for all
x, y ∈ S, then there exists a unique function φ : S/ ∼→ A such that φ ◦ q = f , that is such
that the following diagram commutes.

S A

S/ ∼

q

f

φ

1.2 Zorn’s Lemma

This section is a streamlined version of a similar section in [Lan05].

Zorn’s lemma is to algebra what Fourier transforms are to physics. Nobody will every ex-
plicitly teach it to you, but it gets brought up constantly and at some point you seem to be
expected to just learn it via osmosis. I open with it in hopes that, if you haven’t learned it
before, now will be your chance to learn about Zorn’s lemma and its proof.

We begin with a definition.

Definition 1.2.1. Let S be a set. A partial ordering of S is a relation ≤ between elements
of S satisfying the following axioms ∀x, y, z ∈ S

1. x ≤ x

2. x ≤ y ∧ y ≤ z ⇒ x ≤ z

3. x ≤ y ∧ y ≤ x⇒ x = y

Note. We do not require that every pair of elements in S be comparable. If this additional
condition is satisfied, we call ≤ a total ordering, and say that S is totally ordered. Totally
ordered subsets of partially ordered sets are often called chains. If x ≤ y and x ̸= y, we write
that x < y.

We follow this up with a collection of definitions related to Definition 1.2.1.

3



1.2. ZORN’S LEMMA CHAPTER 1. FOUNDATIONS

Definition 1.2.2. Let S be an ordered set. A smallest element of S is an element a ∈ S
such that a ≤ x for all x ∈ S, with a greatest element defined similarly. A maximal element
m ∈ S is an element such that if m ≤ x⇒ x = m, and a minimal element is defined similarly.

Note. Maximal and greatest elements are not identical notions. Indeed, one can note that
maximal elements need not be a greatest element, and that greatest elements are unique
when they exist (while maximal elements may not be). A similar result hold minimal and
smallest elements.

Definition 1.2.3. Let T ⊆ S be a subset of a partially ordered set. An upper bound of T
in S is an element a ∈ S such that t ≤ a for all t ∈ T . A least upper bound of T in S is an
upper bound b ∈ S such that for any other upper bound a ∈ S, b ≤ a. A set is inductively
ordered if every non-empty totally ordered subset has an upper bound, and strictly so if it
has a least upper bound.

Definition 1.2.4. Let A be a non-empty partially and strictly inductively ordered set. A
map f : A→ A is increasing if, for all x ∈ S, x ≤ f(x).

Definition 1.2.5. Let A be a non-empty partially and strictly inductively ordered set, and
f : A→ A an increasing map. Pick some a ∈ A, and let B ⊆ A. We say that B is admissible
with respect to a if

1. a ∈ B

2. f(B) ⊆ B

3. Whenever T is a non-empty totally ordered subset of B, the least upper bound of T in
A lies in B

Definition 1.2.6. Let A be a non-empty partially and strictly inductively ordered set with
minimal element a ∈ A, and f : A → A an increasing map. We define M(A, f) to be the
intersection of all admissible subsets of A with respect to a.

Note. It is not too difficult to see that M(A, f) is the smallest admissible subset of A with
respect to a, and is contained in all admissible subsets of A with respect to a. Furthermore,
M(A, f) is strictly inductively ordered.

Definition 1.2.7. Let A be a non-empty partially and strictly inductively ordered set with
minimal element a ∈ A, and f : A → A an increasing map. We say that c ∈ M(A, f) is
an extreme point of M(A, f) if x ∈ M(A, f), x < c ⇒ f(x) ≤ c. We further define for such
points that

Mc(A, f) = {x ∈M(A, f) | x ≤ c ∨ f(c) ≤ x}

Note. a ∈Mc(A, f), so this set is necessarily non-empty.

We next build up a series of lemmas related to these definitions. The point of this is to prove
the third of the lemmas, which will be used to prove a subsequent theorem.

4



CHAPTER 1. FOUNDATIONS 1.2. ZORN’S LEMMA

Lemma 1.2.8. Let A be a non-empty partially and strictly inductively ordered set with min-
imal element a ∈ A, f : A → A an increasing map, and c ∈ M(A, f) be an extreme point.
Then Mc(A, f) =M(A, f).

Proof. It suffices to prove that Mc(A, f) is admissible with respect to a. We already have
a ∈ Mc(A, f). Suppose x ∈ Mc(A, f). If x < c, then since c is an extreme point we get
f(x) ≤ c, so f(x) ∈ Mc(A, f). If x = c, then f(c) ≤ f(x) ⇒ f(x) ∈ Mc(A, f). If f(c) ≤ x,
then f(c) ≤ x ≤ f(x) ⇒ f(c) ∈ Mc(A, f). Thus, f(Mc(A, f)) ⊆ Mc(A, f) as required. Let
T ⊆Mc(A, f) be a non-empty totally ordered subset, and b ∈M(A, f) the least upper bound
of T in M(A, f). Pick any x ∈ T . If f(c) ≤ x, then f(c) ≤ b so b ∈ Mc(A, f). If x ≤ c for
all x ∈ T , then b ≤ c⇒ b ∈Mc(A, f), as required.

Lemma 1.2.9. Let A be a non-empty partially and strictly inductively ordered set with min-
imal element a ∈ A, and f : A → A an increasing map. Then every element of M(A, f) is
an extreme point.

Proof. Let E ⊆ M(A, f) be the set of all extreme points. Again, it suffices to show that E
is admissible with respect to a. a is vacuously extreme, so a ∈ E. Now, pick any c ∈ E,
x ∈M(A, f). Suppose x < f(c). By lemma 1.2.8,Mc(A, f) =M(A, f), so x ≤ c or f(c) ≤ x.
If x < c, then f(x) ≤ f(c). If x = c, then f(x) ≤ f(c). This proves that f(c) ∈ E as desired.
Finally, let T ⊆ E be a non-empty totally ordered subset, and b ∈ M(A, f) the least upper
bound of T in M(A, f). Suppose x ∈ M(A, f) and x < b. Then ∃c ∈ T such that x ≤ c
(indeed, we otherwise get by lemma 1.2.8 that f(c) ≤ x for all c ∈ T , and hence c ≤ x for
all c ∈ T , so b ≤ x). If x < c, then f(x) ≤ c ≤ b so f(x) ≤ b. If x = c, then by lemma 1.2.8
we must get f(x) ≤ b (as otherwise b ≤ x). This shows that b ∈ E, and hence completes the
proof.

Lemma 1.2.10. Let A be a non-empty partially and strictly inductively ordered set with
minimal element a ∈ A, and f : A→ A an increasing map. Then M(A, f) is totally ordered.

Proof. Pick any x, y ∈ M(A, f). By lemma 1.2.9, y is an extreme point of M(A, f), so by
lemma 1.2.8 either x ≤ y or y ≤ f(y) ≤ x⇒ y ≤ x.

Using this result, we prove a powerful theorem of which Zorn’s lemma is a corollary.

Theorem 1.2.11 (Bourbaki’s Theorem). Let A be a non-empty partially and strictly induc-
tively ordered set, and f : A → A an increasing map. Then ∃x0 ∈ A such that f(x0) = x0,
that is f has a fixed point.

Proof. Suppose that A is totally ordered. Then since it has a least upper bound b ∈ A,
b ≤ f(b) ≤ b ⇒ b = f(b), as required. Otherwise, it suffices to find an admissible totally
ordered subset of A. Pick some a ∈ A and let B be the set of elements x ∈ A such that
x < a. Then A\B is admissible with respect to a, and a is a minimal element of A\B, so
we may assume without loss of generality that A has a minimal element a ∈ A. By lemma
1.2.10, M(A, f) is the desired totally ordered admissible subset.

Corollary 1.2.11.1 (Weak Zorn’s Lemma). Let A be a non-empty partially and strictly
inductively ordered set. Then A has a maximal element.

5
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Proof. Suppose not. Then for any x ∈ A, there exists some yx ∈ A such that x < yx
2,

as otherwise x would be maximal. Let f : A → A be defined by f : x 7→ yx. Then f is
increasing, so by Theorem 1.2.11 f has a fixed point, which is impossible.

Corollary 1.2.11.2 (Zorn’s Lemma). Let A be a non-empty partially and inductively ordered
set. Then A has a maximal element.

Proof. Let B be the set of non-empty totally ordered subsets of A. Then B is not empty,
as any singleton is totally ordered. If X, Y ∈ B, we define a partial order ≤ on B by
X ≤ Y ⇐⇒ X ⊆ Y . In fact, this makes B strictly inductively ordered. To see this,
let T = {Xi}i∈I ⊂ B be totally ordered, and let Z = ∪i∈IXi. Pick any x, y ∈ Z. Then
x ∈ Xi, y ∈ Yj for some i, j ∈ I. Since T is totally ordered, we get (without loss of
generality) Xi ⊆ Xj, so since Xj ∈ B we must have x ≤ y or y ≤ x. Thus, Z is totally
ordered, and hence clearly a least upper bound of T . Therefore, B is a non-empty partially
and strictly inductively ordered set, and therefore has a maximal element X0 ∈ B. Since
A is inductively ordered, X0 has an upper bound m ∈ A. We’ll show that m is a maximal
element of S. Indeed, suppose that x ∈ S and m ≤ x. Then X0 ∪ {x} is totally ordered, so
by the maximality of X0 we must get X0 = X0 ∪ {x} ⇒ x ∈ X0 ⇒ x ≤ m, so x = m, as was
to be shown.

Note. The non-empty condition comes from the definition of an inductively ordered set, and
isn’t really needed. Indeed, suppose that A is a non-empty partially ordered set such that
every totally ordered subset has an upper bound. Then in particular every non-empty totally
ordered subset has an upper bound, so by Zorn’s lemma A has a maximal element.

Zorn’s lemma turns out to be equivalent to the axiom of choice, but as this is not a book on
set theory we won’t get further into that here. If you’re interested in learning more about
that, it may be worth starting at this rabbit hold of a Wikipedia page3.

2This choice of yx is invoking the axiom of choice
3https://en.wikipedia.org/wiki/Axiom_of_choice#Equivalents
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Chapter 2

Groups

2.1 Basic Definitions

We start with the basic definitions of group theory.

Definition 2.1.1. Amonoid is a tuple (M, 1, ·), whereM is a set, 1 ∈M , and · :M×M →M
is an operation such that for all a, b, c ∈M

a · (b · c) = (a · b) · c 1 · a = a · 1 = a

We usually call this operation multiplication, and omit the · when writing it. We also de-
note monoids with just their set, M . A monoid is called Abelian if its multiplication is
commutative.

Example 2.1.1. The natural numbers N under addition or multiplication are a monoid. An-
other good example is Rn×n under multiplication, which is not an Abelian monoid.

Definition 2.1.2. Let M be a monoid. For any a ∈ M , we call b ∈ M the right-inverse of
a if ab = 1, and the left-inverse if ba = 1. b is called the inverse of a if it is both a left and
right inverse. A monoid where every element has an inverse is called a group.

Example 2.1.2. Rn×n under multiplication is not a group, due to the lack of inverses. The
set of all invertible matrices in Rn×n is a group.

Theorem 2.1.3. Let a ∈ M be an invertible (has an inverse) element of a monoid. Then
its inverse is unique.

Proof. Suppose b, c ∈M are inverses of a. Then ab = ac⇒ b(ab) = b(ac)⇒ (ba)b = (ba)c⇒
1b = 1c⇒ b = c.

As a result of Theorem 2.1.3, we denote the unique inverse of an element a ∈M by a−1.

Definition 2.1.4. A sub-monoid (sub-group) of a monoid M is a subset of M which is itself
a monoid (group).

Theorem 2.1.5. Let {Uα}α∈I be a collection of sub-monoids of a monoid M . Then U =⋂
α∈I Uα is a sub-monoid of M .
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Proof. Since 1 ∈ Uα for every α ∈ I, 1 ∈ U . Associativity of multiplication is inherited from
the monoidM , so it suffices to check that U is closed under multiplication. Pick any a, b ∈ U .
Then a, b ∈ Uα for all α ∈ I, so ab ∈ Uα for all α ∈ I. Thus, ab ∈ U , as was to be shown.

Note. An identical result holds for groups.

Definition 2.1.6. Let S ⊆M be a subset of a monoid M . The sub-monoid generated by S,
denoted by ⟨S⟩, is the intersection of all sub-monoids of M containing S.

Note. By the result of Theorem 2.1.5, ⟨S⟩ is in fact a sub-monoid of M .

We next state a result which provides a much more practical way of expressing the module
generated by a set.

Theorem 2.1.7. ⟨S⟩ is the set of all elements of M that may be written as a product of 1
and the elements of S.

Proof. Let X be the collection of products of elements of S and 1. Since ⟨S⟩ is a sub-monoid
containing S and 1, any product of those elements is in ⟨S⟩, so X ⊆ ⟨S⟩. But X is closed
under multiplication, and hence a sub-monoid of M containing S. Therefore, ⟨S⟩ ⊆ X, as
was to be shown.

Note. We can make an identical definition for groups. Theorem 2.1.7 still holds if you include
the inverse of every element in S in the products.

Definition 2.1.8. Let a ∈ M be an element of a monoid. The order of a, denoted o(a),
is the smallest n ∈ N such that an = 1. If no such natural number exists, we write that
o(a) =∞.

Theorem 2.1.9. If an element a ∈M has finite order, it is invertible.

Proof. Suppose that o(a) = n. Then an = 1 = an−1a = aan−1, so an−1 = a−1.

Theorem 2.1.10. Every element of a finite group G has finite order.

Proof. Suppose a ∈ G has infinite order. Pick any n ≥ m ∈ N. If an = am, then an−m = 1.
Then a has finite order if n ̸= m, so n = m. It follows that ak is distinct for each k ∈ N. But
this would imply that G is infinite, a contradiction.

Definition 2.1.11. Let M,N be monoids. A homomorphism φ : M → N is a map such
that for any a, b ∈M , φ(ab) = φ(a)φ(b).

Note. Since φ(a) = φ(1a) = φ(1)φ(a) and φ(a) = φ(a1) = φ(a)φ(1) for any homomorphism
φ and monoid element a, φ(1) = 1 for any homomorphism.

An injective homomorphism is called a monomorphism, and a surjective one an epimorphism.
A bijective homomorphism is called an isomorphism. If there exists an isomorphism between
two monoids M,N , we call them isomorphic and write that M ∼= N . Note that ∼= is an
equivalence relation.
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2.2 Group of Transformations

This section is partially based on (and uses some proofs from) a similar section in [Jac09].
For the next few definitions, let X be an arbitrary set.

Definition 2.2.1. The monoidM(X) of all transformations onX is the set of all set functions
f : X → X, with multiplication given by function composition. The group Sym(X) of all
invertible elements of M(X) is the symmetric group of X.

It is not too difficult to check that these are indeed a monoid and group respectively. Any
sub-monoid of M(X) is called a monoid of transformations, and any sub-group of Sym(X)
a group of transformations.

Definition 2.2.2. Suppose that X is a finite set with |X| = n. Then we call Sym(X) = Sn
the permutation group on n elements. A sub-group of Sn is called a permutation group on
n elements.

We generally represent permutations σ ∈ Sn as the product of disjoint cycles. That is,
denoting X = {1, 2, . . . , n} we first look at the sequence

1, σ(1), σ2(1), . . .

Since |X| <∞, this sequence is finite. Since σ is invertible, the image of the final element of
the sequence is 1. We call this sequence a disjoint cycle, and write it (1σ(1)σ2(1) · · · ). This
represents a function on X that takes 1 to σ(1), σ(1) to σ2(1) and so on, and does nothing
on any element not in the cycle. Repeating this process with an element not in any previous
cycle, we get the following result.

Proposition 2.2.3. Any permutation can be written as the product of disjoint cycles, and
this product is unique up to the order of the cycles. Furthermore, disjoint cycles commute.

Note. The presentation of any given cycle is not unique, for example (123) = (312) = (231).
In general, doing a cyclic permutation of the elements of a cycle does not change the cycle
that it represents.

Now, we present two extremely important results on symmetric groups.

Theorem 2.2.4. For any n ∈ N, |Sn| = n!.

Proof. We do this constructively. Pick any σ ∈ Sn. We have n valid choices for σ(1). Then
since σ is bijective, we have n− 1 for σ(2), n− 2 for σ(3), and so on until we have only one
choice for σ(n). Thus, |Sn| = n!, as was to be shown.

Theorem 2.2.5 (Cayley’s Theorem). Let G be a finite group. Then there exists a finite set
X and group of transformations H on X such that G ∼= H.

Proof. Set X = G, and for any g ∈ G consider the transformation Lg : X → X given by

Lg(x) = gx

11
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We’ll prove that H = {Lg | g ∈ G} is a group, and that the map φ : g 7→ Lg is an
isomorphism. Let La, Lb, Lc ∈ H. Then we get

(LaL1)(x) = La(L1(x)) = La(1x) = La(x) = ax

(L1La)(x) = L1(La(x)) = L1(ax) = 1(ax) = ax

(LaLb)(x) = La(Lb(x)) = La(bx) = a(bx) = (ab)x = Lab(x)

((LaLb)Lc)(x) = (LaLb)(cx) = (ab)(cx) = a(bcx) = (La(LbLc))(x)

(LaLa−1)(x) = La(La−1(x)) = a(a−1x) = x

(La−1La)(x) = La−1(La(x)) = La−1(ax) = a−1(ax) = x

The first two lines prove that L1 is our unit 1, the third closure under multiplication, the
fourth associativity, and the last two that La−1 is the inverse of La, so H is a group. Suppose
that a, b ∈ G satisfy φ(a) = φ(b). Then in particular, b = b1 = φ(b)(1) = φ(a)(1) = a1 = a,
so φ is injective. φ is clearly surjective, and is hence bijective. It remains to show that it is
a homomorphism. Indeed, we get for any x ∈ G

φ(ab)(x) = (ab)(x) = a(bx) = φ(a)(φ(b)(x)) = (φ(a)φ(b))(x)

so φ is a homomorphism, completing the proof.

Note. Cayley’s theorem allows us to study any finite group (in theory) by studying subgroups
of Sn, which simplifies our life considerably. The only trick is that you often need to un-
derstand the structure of the group to find its corresponding subgroup of Sn, which has an
unfortunate circular quality.

Note. Cayley’s theorem extends to infinite monoids/groups, which are isomorphic to monoid-
s/groups of transformation. The proof is essentially identical.

Finally, we’ll develop the notion of the sign of a permutation. Before starting on this journey,
we’ll need the following lemma.

Lemma 2.2.6. Let a, b, c1, . . . , cm, d1, . . . dk be distinct elements in a finite set X. Then the
following two equations hold.

1.
(ab)(ac1 · · · cmbd1 · · · dk) = (ac1 · · · cm)(bd1 · · · dk)

2.
(ab)(ac1 · · · cm)(bd1 · · · dk) = (ac1 · · · cmbd1 · · · dk)

Proof. The first of these is obtained by tracing through the result of applying both sides to
a, b, c1, . . . , cm, d1, . . . dk. We also note that (ab)2 = 1. Then applying (ab) to both sides of
the second equality, we see that it is in fact equivalent to the first.

Note. Result (1) in the proceeding lemma implies that any disjoint cycle can be split into
two smaller disjoint cycles. The above results also still hold if m = 0 or k = 0.

Using this, we can find an alternative way of representing permutations.
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Theorem 2.2.7. Any permutation can be written as the product of transpositions (cycles of
the form (ab), where a ̸= b).

Proof. Since every permutation can be written as the product of disjoint cycles, it suffices by
Lemma 2.2.6 to prove this for cycles of the form (abc), where a, b, c are all distinct. Indeed,
we note that (abc) = (ab)(bc), as required.

This transposition decomposition is closely related to the sign of a permutation, which we
now (finally) define.

Definition 2.2.8. Let σ = C1C2 · · ·Cm be the disjoint cycle representation of a permutation
σ, where each Ci is a cycle of length di. Then the sign of σ is defined as

sgn(σ) = (−1)
∑r
i=1(di−1)

Note. Since the disjoint cycle decomposition of a permutation is unique up to the order of
cycles, sgn is in fact well-defined.

Proposition 2.2.9. Let σ be a permutation and τ a transposition. Then sgn(τσ) = − sgn(σ).

Proof. Let τ = (ab). There are then two cases to consider.
Case 1 : Suppose that a, b are in two different cycles in σ. Without loss of generality (since
we can just cyclically permute the elements of a cycle, and we can permute disjoint cycles),
these cycles are C1 = (ac1 · · · cm) and C2 = (bd1 · · · dk). Then writing σ = C1C2 · · ·Cn as a
product of disjoint cycles with lengths lk, we get by Lemma 2.2.6 the following

τσ = (ab)(ac1 · · · cm)(bd1 · · · dk)C3 · · ·Cn = (ac1 · · · cmbd1 · · · dk)C3 · · ·Cn

This new cycle is disjoint from the other Ci, and has length l1 + l2. Thus, we get

sgn(τσ) = (−1)(l1+l2−1)+
∑n
i=3(li−1) = (−1)1+

∑n
i=1(li−1) = − sgn(σ)

as required.
Case 2 : Suppose that a, b are in the same cycle in σ. Without loss of generality, we write
this cycle as C1 = (ac1 · · · cmbd1 · · · dk). Then writing σ = C1 · · ·Cn as a product of disjoint
cycles with lengths lk, we get by Lemma 2.2.6 the following

τσ = (ab)(ac1 · · · cmbd1 · · · dk)C2 · · ·Cn = (ac1 · · · cm)(bd1 · · · dk)C2 · · ·Cn

These two new cycles are disjoint from the other Ci, and have lengths l11 + l12 = l1. Thus,
we get

sgn(τσ) = (−1)(l11−1)+(l12−1)+
∑n
i=3(li−1) = (−1)

∑n
i=1(li−1)−1 = − sgn(σ)

as required.

This proposition turns out to be quite useful in proving the following theorem.

Theorem 2.2.10. For any permutations σ1, σ2, sgn(σ1σ2) = sgn(σ1) sgn(σ2).

13
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Proof. By Theorem 2.2.7, we may write σ1 = τ1 · · · τn as a product of transposition. Then
by repeated application of Proposition 2.2.9 we get

sgn(σ1σ2) = (−1)nσ sgn(σ2) = sgn(σ1) sgn(σ2)

as required.

This finally brings us to the full relation between transpositions and the sign of a permutation,
which is an immediate consequence of Theorem 2.2.10.

Corollary 2.2.10.1. Suppose a permutation σ can be written as the product of k trans-
positions. Then sgn(σ) = (−1)k. Furthermore, any representation of σ as a product of
transpositions must have an even amount of transpositions if sgn(σ) = 1, and an odd amount
otherwise.

2.3 Cosets and Quotient Groups

Definition 2.3.1. Let G be a group, and H ⊆ G a subgroup. We define two equivalence
relations ∼L,∼R by, for any x, y ∈ G

x ∼L y ⇐⇒ ∃h ∈ H | hx = y, x ∼R y ⇐⇒ ∃h ∈ H | xh = y

We call the equivalence classes in G/ ∼L, G/ ∼R left and right cosets respectively. They are
given more explicitly by, for any x ∈ G

xH = {xh | h ∈ H}, Hx = {hx | h ∈ H}

Note. While not proven in the definition, it is not too hard to prove that these are indeed
equivalence relations.

What we’re really after here is some unified notion of the quotient group, so we want to find
out what left and right cosets have in common.

Lemma 2.3.2. Let G be a group, and H ⊆ G a subgroup. For any x ∈ G, |xH| = |Hx| =
|H|.

Proof. Consider the function f : H → xH given by f(h) = xh. This is surjective, and
injective since f(h1) = f(h2) ⇒ xh1 = xh2 ⇒ h1 = h2 (by cancelling the x on both sides).
Thus, it is bijective. The proof for Hx is identical.

This gives an immediate corollary.

Corollary 2.3.2.1. If G is finite, then for any subgroup H ⊆ G there are the same number
of left and right cosets.

We use this to build a new definition.

Definition 2.3.3. Let G be a finite group and H ⊆ G a subgroup. We denote the number
of left/right cosets (xH or Hx) in G by [G : H], and call it the index of H in G.
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Which brings us to our first big result of the section.

Theorem 2.3.4 (Lagrange’s Theorem). Let G be a finite group and H ⊆ G a subgroup.
Then |G| = [G : H]|H|.

Proof. By lemma 2.3.2, each coset xH (we choose left cosets here for convenience) in G has
size |H|. The result is then immediate from the definition of [G : H].

This has a couple of immediate corollaries.

Corollary 2.3.4.1. Let g ∈ G be any element of a finite group. Then o(g) | |G|.

Proof. It suffices to note that o(g) = |⟨g⟩|.

Corollary 2.3.4.2. Let g ∈ G be any element of a finite group. Then g|G| = 1.

Proof. Since o(g) | |G|, ∃k ∈ N such that o(g)k = |G|. Thus

g|G| = (go(g))k = 1k = 1

We now move on towards quotient groups, for which we really want left and right cosets to
be identical.

Definition 2.3.5. A subgroup H ⊆ G is called normal, denoted H � G, if for all x ∈ G,
xH = xH.

When H �G, we often just refer to the coset of an element, and don’t bother specifying left
or right.

Theorem 2.3.6. H �G if and only if for all h ∈ H and g ∈ G, ghg−1 ∈ H.

Proof. Suppose H �G, and pick any h ∈ H. Then for any g ∈ G, gh ∈ Hg. Thus, ∃h′ ∈ H
such that gh = h′g ⇒ ghg−1 ∈ H, as was to be shown. Now, suppose that ghg−1 ∈ H for
all g ∈ G, h ∈ H. Let h′ = ghg−1. Then h′g = gh, so gh ∈ Hg. Since this was for arbitrary
g, h, this implies that gH = Hg, as was to be shown.

Theorem 2.3.7. Suppose H � G. Then the set of cosets of G relative to H, with multipli-
cation defined by (xH)(yH) = (xy)H, is a group.

Proof. All the properties of group multiplication are inherited from G if this multiplication
is well-defined, so we just need to check this. Suppose xH = yH and aH = bH. Then since
H is normal, ∃h, h′ ∈ H such that hx = y, ah′ = b (this is using the same technique as in
the proof of Theorem 2.3.6, just taking one of the values in H to be 1). Since multiplying by
elements of H doesn’t change the coset, it follows that

(xH)(aH) = (xa)H = (xah′)H = (xb)H = H(xb) = H(hxb) = H(yb) = (yb)H

completing the proof.

Definition 2.3.8. The group from Theorem 2.3.7 is denoted G/H, and called the quotient
group of G by H, or G mod H.

Note. When G/H is a quotient group, the canonical quotient map becomes a homomorphism.
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2.4 Homomorphism Theorems

Again, this is a reworking of a similar section in [Jac09].

Definition 2.4.1. Let φ : G1 → G2 be a group homomorphism. The kernel of φ is given by

ker(φ) = {g ∈ G1 | φ(g) = 1}

Lemma 2.4.2. ker(φ)�G1.

Proof. We know that φ(1) = 1, so this condition is satisfied. It remains to check closure
under multiplication and the existence of multiplicative inverses. For the former, we note
that if x, y ∈ ker(φ), then φ(xy) = φ(x)φ(y) = 1, so xy ∈ ker(φ). For the latter, we note
that for any x ∈ G1, φ(xx

−1) = 1 = φ(x)φ(x−1), so φ(x)−1 = φ(x−1). Thus, if x ∈ ker(φ),
φ(x−1) = φ(x)−1 = 1−1 = 1, so x−1 ∈ ker(φ).

We denote the set of all homomorphisms between two groups G1, G2 by Hom(G1, G2). If the
homomorphism is between a group and itself, we drop the second group in that notation.
We denote all the isomorphisms by Isom(G1, G2).

Theorem 2.4.3 (First Fundamental Theorem of Homomorphisms). Let G1, G2 be groups
and pick any φ ∈ Hom(G1, G2). Let π ∈ Hom(G1, G1/ ker(φ)) be the quotient map. Then
there exists an isomorphism f ∈ Isom(G1/ ker(φ), φ(G1)) which makes the following diagram
commute.

G1 φ(G1)

G1/ ker(φ)

π

φ

f

Proof. We proceed by directly constructing f . Pick any g ker(φ) ∈ G1/ ker(φ). We define
that f(g ker(φ)) = φ(g). This is clearly a homomorphism if it is well-defined, so we prove that
it is in fact well-defined. Suppose that x, y ∈ G are elements such that x ker(φ) = y ker(φ).
Then ∃h ∈ ker(φ) such that xh = y, so φ(y) = φ(xh) = φ(x)φ(h) = φ(x), as required. f is
by definition surjective onto φ(G1), so it remains only to prove that it is injective. Suppose
that f(x ker(φ)) = f(y ker(φ)). Then φ(x) = φ(y)⇒ φ(x)φ(y)−1 = 1, so φ(xy−1) = 1. Then
xy−1 ∈ ker(φ), so x ker(φ) = y ker(φ), as was to be shown.

Corollary 2.4.3.1. Any φ ∈ Hom(G1, G2) is injective if and only if ker(φ) = {1}.

Proof. Suppose φ is injective. Then by definition, G1
∼= φ(G1). But by Theorem 2.4.3,

φ(G1) ∼= G1/ ker(φ), so G1
∼= G1/ ker(φ). Thus, the projection map π : G1 → G1/ ker(φ)

is injective, so π−1(ker(φ)) = ker(φ) = {1}, as required. Now, suppose that ker(φ) = {1}.
Then x ker(φ) = y ker(φ) if and only if x = y, so π is injective. By Theorem 2.4.3, the
following diagram commutes
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G1 φ(G1)

G1/ ker(φ)

π

φ

f

where f is an isomorphism, so it follows that φ is injective.

Lemma 2.4.4. The image or pre-image of a subgroup under a homomorphism is a subgroup.

Proof. Let G,H be groups and φ : G → H a homomorphism. Let K ⊆ G be a subgroup.
Then 1 ∈ K, so φ(1) = 1 ∈ φ(K). Pick any a, b ∈ φ(K). Then ∃x, y ∈ K such that
φ(x) = a, φ(y) = b, so φ(xy) = ab ∈ φ(K), making it a subgroup of H. Suppose K ⊆ H
is a subgroup. Then 1 ∈ K, so 1 ∈ φ−1(K) as required. Suppose x, y ∈ φ−1(K). Then
φ(xy) = φ(x)φ(y) ∈ K, so xy ∈ φ−1(K) making it a group.

Theorem 2.4.5 (Second Fundamental Theorem of Homomorphisms). Let G1, G2 be groups
and φ : G1 → G2 a surjective homomorphism. Then

1. There exists a bijection between all subgroups of G1 containing ker(φ) and all subgroups
of G2.

2. If H ⊇ ker(φ) is a subgroup of G1, H �G1 if and only if φ(H)�G2.

3. If ker(φ) ⊆ H �G1, then G1/H ∼= G2/φ(H).

Proof. Let π : G1 → G1/ ker(φ) be the quotient map. Then by lemma 2.4.4, π maps the
subgroups of G1 onto all subgroups of G1/ ker(φ). By Theorem 2.4.3, G1/ ker(φ) ∼= G2, so
by lemma 2.4.4 the isomorphism f : G1/ ker(φ)→ G2 is a bijective map between subgroups
of G1/ ker(φ) and subgroups of G2. Since the pre-image of any subgroup of G1/ ker(φ) under
π contains ker(φ), f ◦ π is a surjection between subgroups of G1 containing ker(φ) and
subgroups of G2. Finally, suppose that H1, H2 are subgroups of G1 containing the kernel and
π(H1) = π(H2). Then H1 = {h kerφ}h∈H1 = {h kerφ}h∈H2 = H2, so f ◦ π = φ is injective
between the sets of subgroups, making it a bijection.
Let H ⊇ G1 contain the kernel. Suppose it is normal. Pick any h ∈ φ(H), g ∈ G2. Then
∃g′ ∈ G1, h

′ ∈ H such that φ(g′) = g, φ(h′) = h. Thus, ghg−1 = φ(g′)φ(h′)φ(g′−1) =
φ(g′h′g′−1). Since H is normal, g′h′g′−1 ∈ H, so ghg−1 ∈ φ(H), making it normal. Suppose,
conversely, that φ(H) is normal. Pick any g ∈ G1, h ∈ H. Note, by part (1) of this theorem,
that φ−1(φ(H)) = H. Thus, φ(ghg−1) = φ(g)φ(h)φ(g)−1 ∈ φ(H) implies that ghg−1 ∈ H,
as required.
Finally, suppose that ker(φ) ⊆ H�G1. By part (2), we know that φ(H)�G2. Let π

′ : G2 →
G2/φ(H) be the quotient map, and let ψ = π′ ◦ φ. Then by Theorem 2.4.5, G1/ ker(ψ) ∼=
G2/φ(H). But ker(ψ) = φ−1(π′−1(1)) = φ−1(φ(H)) = H, so G1/H ∼= G2/φ(H).

Definition 2.4.6. Let H,K ⊆ G be subgroups. We define the product of the subgroups as

HK = {hk | h ∈ H, k ∈ K}

Lemma 2.4.7. If K �G, then HK is a subgroup of G.
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Proof. Since 1 ∈ H,K, 1 ∈ HK. Pick any hk, h′k′ ∈ HK. Then

(hk)(h′k′) = (hh′)(h′−1kh′)k′ = h′′k′′

for some h′′ ∈ H, k′′ ∈ K, as required. We just need to check inverses.

(hk)−1 = k−1h−1 = h−1(hk−1h−1) = h−1k′

for some k′ ∈ K, as required.

Theorem 2.4.8 (Third Fundamental Theorem of Homomorphisms). Let G1, G2 be groups,
φ : G1 → G2 a surjective homomorphism, K = ker(φ), and H ⊆ G1 any subgroup. Then

φ(H) ∼=
HK

K
∼=

H

H ∩K

Proof. Let ψ = φ↾HK , ϑ = φ↾H . Then since K ⊆ HK, ψ−1(1) = K and ϑ−1(1) = K ∩ H.
Furthermore, we can note that since ψ(hk) = ϕ(hk) = ϕ(h), ψ(HK) = φ(H). Thus, by
Theorem 2.4.3 we have the following two commutative diagrams.

HK φ(H)

HK/K

ψ

∼=

H φ(H)

H/(K ∩H)

ϑ

∼=

as required.

Note. Many books will put these theorems in a different order, give them different names, or
add/remove conclusions from each. I do not claim that these are the authoritative correct
fundamental theorems of homomorphisms.

2.5 Cyclic Groups

This section is essentially that of the same name presented in the first chapter of [Jac09],
and aims to introduce properties of the simplest kind of groups; cyclic groups. I’ve done my
best to rework it in a way that hopefully increases clarity.

Definition 2.5.1. A cyclic group is a group generated by a single element.

We refer to an element that generates a cyclic group as a generator of that group. In general,
a cyclic group will have many possible generators.

Lemma 2.5.2. If G is Abelian, every subgroup of G is normal.

Proof. If K ⊆ G, k ∈ K, g ∈ G, then gkg−1 = gg−1k = k ∈ K.

Theorem 2.5.3. Suppose G is cyclic. Then if G is infinite, G ∼= Z (the additive group of
integers) and otherwise G ∼= Z/|G|Z (the additive group of integers modulo |G|).
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Proof. Let G = ⟨g⟩. If G is infinite, we can define a homomorphism φ : G → Z by g 7→ 1.
Since φ(gn) = nφ(g) = n, φ is injective and surjective, so G ∼= Z. Suppose |G| = n, that
is o(g) = n. Then we can define a homomorphism φ : G → Z/nZ by φ(g) = [1]. This is
certainly surjective. φ(gr) = φ(gm) ⇒ [r] = [m] ⇒ r = kn +m for some k ∈ Z. But then
gr = gkn+m = gm, so φ is injective. Finally, we note that since gn = 1, gm = gm mod n for any
m ∈ Z, so this map is well-defined. Thus, G ∼= Z/nZ.

Combining this with the transitivity of being isomorphic, we get an immediate corollary.

Corollary 2.5.3.1. Any two cyclic groups of the same order are isomorphic.

Theorem 2.5.4. Any subgroup of a cyclic group is cyclic. If the cyclic group is infinite, the
set of all non-trivial subgroups is in bijection with N. If G = ⟨g⟩, where o(g) = n, then there
is one and only subgroup of order q for every q | n.
Proof. Let G = ⟨g⟩. For any subgroup H ⊆ G, there exists some smallest n > 0 such that
gn ∈ H (note we can assume n > 0 since if n < 0, we simply take its inverse). Any element
of the form gm, where n | m, can be generated by this element. Suppose ∃gm ∈ H such that
n ∤ m. Write m = kn + r, where k ∈ Z, 0 < |r| < n. Then gm−kn = gr ∈ H. But r < n,
contradicting the minimality of n. Hence, H = ⟨gn⟩, as was to be shown.
Now, suppose that o(g) = ∞. Then ⟨gn⟩ ⊆ G is a subgroup for each n ∈ N. Furthermore,
all non-trivial subgroups are of this form, as if the generator is gn for n < 0 we simply take
its inverse, and g0 = 1. It suffices then to show that each of these is unique. Suppose that
⟨gn⟩ = ⟨gm⟩ for some m,n ∈ N. Then there exists some k such that gmk = gn ⇒ gmk−n = 1.
There also exists some r ∈ N such that grn = gm ⇒ grn−m = 1. Since g has infinite order,
mk − n, rn−m = 0⇒ n | m,m | n, so m = n as required.
Suppose o(g) = n, and pick any subgroup H ⊆ G. Let m ∈ N be the minimal number such
that gm ∈ H. From the above, we know that H = ⟨gm⟩. Pick any q | n. For existence, it
suffices to note that o(gn/q) = q. For uniqueness, let m ∈ N be the minimal number such
that o(gm) = q. Suppose o(gk) = q. Then ∃a, b ∈ N such that qm = an, qk = bn. Then
m = an

q
, k = bn

q
. Since m is minimal, it follows that a = 1 (as a = 1 certainly works), so

gk ∈ ⟨gm⟩, as required.
Corollary 2.5.4.1. Let G be a group, and a ∈ G an element such that o(a) < ∞. Then
⟨a⟩ = {g ∈ G | o(g) | o(a)}.
Proof. Suppose g ∈ ⟨a⟩. Then g = an for some n ∈ N. Thus, o(g) | o(a), as required. Now,
suppose that o(g) | o(a). By Theorem 2.5.4, there is exactly one group of order o(g), and g
must generate this group. But o(ao(a)/o(g)) = o(g), so it follows that this group lies in ⟨a⟩,
and in particular g ∈ ⟨a⟩.
Lemma 2.5.5. Let a, b be elements of an abelian group of finite orders o(a) = n, o(b) = m
such that (n,m) = 1. Then ⟨a⟩ ∩ ⟨b⟩ = ⟨1⟩, ⟨a, b⟩ = ⟨ab⟩, and o(ab) = nm.

Proof. Suppose x ∈ ⟨a⟩ ∩ ⟨b⟩. Then o(x) | n,m, so o(x) = 1 ⇒ x = 1 as required. Since
the group is Abelian, (ab)k = akbk for any k ∈ N. In particular, if k ∈ N we get ak = b−k ∈
⟨a⟩ ∩ ⟨b⟩, so ak = b−k = 1 ⇒ n,m | k. The smallest such k is nm, and (ab)nm = 1, so
o(ab) = nm. Finally, note that we can write every x ∈ ⟨a, b⟩ in the form x = arbq, where
0 ≤ r < n, 0 ≤ q < m. It follows that |⟨a, b⟩| ≤ nm. But ⟨ab⟩ ⊆ ⟨a, b⟩, so ⟨a, b⟩ = ⟨ab⟩.
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Lemma 2.5.6. If G is a finite Abelian group, then it contains an element whose order is
divisible by the order of every element of G.

Proof. Since G is finite, it suffices to show that we can do this with any two elements. Let
a, b ∈ G, and take the prime decomposition of both orders

o(a) = n = pe11 · · · perr · · · p
el
l o(b) = m = pf11 · · · pfrr · · · p

fl
l

We order things such that ei ≥ fi for i ≤ h, and fi ≥ ei for i > h. We can see then that

[n,m] = pe11 · · · perr p
fr+1

r+1 · · · p
fl
l

Let q = pf11 · · · pfrr , s = p
er+1

r+1 · · · p
el
l . Then [n,m] = n

s
m
q
, and (n/s,m/q) = 1. o(as) =

n/s, o(bq) = m/q, so by lemma 2.5.5 o(asbq) = [n,m], as required.

Theorem 2.5.7. Let G be a finite Abelian group. Then G is cyclic if and only if |G| is the
smallest positive integer n such that an = 1 for all a ∈ G.

Proof. Suppose G is cyclic, with generator g. Then o(g) = |G|, so by Lagrange’s theorem
a|G| = 1 for any a ∈ G. Since o(g) = |G|, this is the smallest such integer. Now, suppose
that |G| is the smallest positive integer n such that an = 1 for all a ∈ G. By lemma 2.5.6,
∃g ∈ G whose order is divisible by the order of every element in G. Then ao(g) = 1 for any
a ∈ G, and o(g) ≤ |G|, so o(g) = |G|. Thus, G = ⟨g⟩, completing the proof.

2.6 Group Actions

This section is based on similar sections in [Jac09] and [Lan05]. In it, we introduce one of
the most important applications of groups in mathematics, group actions.

Definition 2.6.1. An action of a groupG on a set S is a homomorphism f ∈ Hom(G, Sym(S)).

If a group G acts on a set S, we call S a G-set. Before looking at examples, let’s prove a
result that makes the reasoning for calling this a group action more clear.

Theorem 2.6.2. Let G be a group and S a set. S is a G-set if and only if there exists a
map · : G× S → S satisfying the following axioms for any x ∈ S, g, h ∈ G

1. 1 · x = x

2. (gh) · x = g · (h · x)

Proof. Suppose S is a G-set. Then there exists a homomorphism φ : Hom(G, Sym(S)), in
which case we simply define that g · x = φ(g)(x) (one can check that this has the desired
properties). Now, suppose that the map · exists. Then x 7→ g · x is a permutation of S, and
φ(g) = (x 7→ g · x) is the desired homomorphism.
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Note. The above version of a group action is also called a left group action, with right group
actions being similar but with a map ·S × G → S. These are essentially identical to left
group actions, so we won’t be bothering with them here. They are occasionally a clearer
notation though.

Example 2.6.1. Given any group G and subgroupH ⊆ G, G acts on G/H by g ·(kH) = (gk)H
(for any g, k ∈ G).
A group action is effective if the map φ ∈ Hom(G, Sym(S)) is injective. It is faithful if g · x
for all x ∈ S implies that g = 1, and free if g · x for some x ∈ S implies that g = 1.

The rest of this section is admittedly a little haphazard, exploring the varied directions of
inquiry we could take with group actions. Let’s start by figuring out how to move between
group actions.

Definition 2.6.3. Let X, Y be G-sets. A map f : X → Y is called a morphism of G-sets if
for all g ∈ G, x ∈ X, f(g · x) = g · f(x).

Two G-sets are said to be isomorphic or equivalent if there exists an invertible morphism
between them, whose inverse is also a morphism of G-sets.

Let X be a G-set. The G-orbit of an element x ∈ S is Gx = {g · x | g ∈ G}. Its clear that S
can be partitioned into disjoint G-orbits. A G-set S is called transitive (or the action of G
on S called transitive) if S has exactly one G-set.

Definition 2.6.4. The stabilizer of an element x ∈ X of a G-set X is defined as

StabG(x) = {g ∈ G | g · x = x}

Lemma 2.6.5. For any x ∈ X, StabG(x) is a subgroup of G.

Proof. Suppose a, b ∈ StabG(x). Then (ab) · x = a · (b · x) = a · x = x, so ab ∈ StabG(x).
1 ∈ StabG(x) is clear. Finally, we get

x = 1 · x = (a−1a) · x = a−1 · (a · x) = a−1 · x

so a−1 ∈ StabG(x).

Using this, we can get a very strong result on transitive group actions.

Theorem 2.6.6. Suppose X is a transitive G-set. For any x ∈ S, set H = StabG(x). Then
the action of G on X is equivalent to the left action of G on G/H, as given in example 2.6.1.

Proof. Pick any x ∈ X. We’ll define f : X → G/H by f(g · x) = gH, for any g ∈ G
(note that this only works since X is transitive). First, we need to show that this is well-
defined. Suppose a, b ∈ G are such that a · x = b · x. Then ∃g ∈ G such that b = ag, so
(ag) · x = a · (g · x)⇒ g · x = 1 · x = x, and thus g ∈ H and aH = bH. Next, we show that
this is a morphism of G-sets. Pick any x ∈ X, g ∈ G. Then we get

f(g · x) = gH = g · (1H) = g · f(1 · x) = g · f(x)
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as required. Finally, we show that it is bijective. That f is surjective is clear from the
definition. Suppose that f were not injective. Then ∃a, b ∈ G such that a · x ̸= b · x but
aH = bH. Thus, ∃h ∈ H such that b = ah, so b · x = (ah) · x = a · (h · x) = a · x, which is
impossible. f is therefore bijective, as was to be shown.

This leads immediately to a very useful corollary.

Corollary 2.6.6.1. If X is a transitive G-set, then |X| = [G : StabG(x)] for any x ∈ X.

This is actually more powerful than it looks at first glance for group actions on finite sets.
Suppose X is a finite G-set. Then for any x ∈ X, we can regard Gx as a finite G-set by
restricting the action on X to Gx. It’s clear in this case that G acts transitively on Gx.
Furthermore, if X is finite, then it divides up into finitely many disjoint G-orbits. This,
combined with corollary 2.6.6.1, gives us the following important result.

Theorem 2.6.7. Let X be a finite G-set, and
⊔n
i=1Gxi = X be a decomposition of X into

disjoint G-orbits. Then

|X| =
n∑
i=1

[G : StabG(xi)]

Proof. Since the Gxi are disjoint, |X| =
∑n

i=1 |Gxi|, and by corollary 2.6.6.1 we know that
since G acts on Gxi transitively, |Gxi| = [G : StabG(xi)].

We now take a quick detour into the world of primitive group actions.

Definition 2.6.8. Let X be a G-set, and π(X) a partition of X. We say that π(X) is
stabilized by the G-action if g · Y ∈ π(X) for all g ∈ G, Y ∈ π(X).

Note. There are three partitions of a setX which will always have this property. The partition
X, the partition {x}x∈X and the partition of X into G-orbits.

Definition 2.6.9. Let X be a G-set. We say that G acts primitively on X if the only two
partitions of X stabilized by G are X and {x}x∈X . Otherwise, we say it acts imprimitively.

Note. Since the partition of X into G-orbits is always stabilized by G, G acts primitively
only if it acts transitively.

The next two results have proofs taken directly from [Jac09].

Lemma 2.6.10. G acts imprimitively on a set X if and only if ∃A ⊊ X such that |A| > 1
and for any g ∈ G, either g · Y = Y or (g · Y ) ∩ Y = ∅.

Proof. Suppose there exists Y ⊊ X meeting the above conditions. Then for any g1, g2 ∈ G,
g1 ·Y and g2 ·Y are either equal or disjoint. Let Z = X\(

⋃
x∈X g ·Y ). Then g1 ·B∩g2 ·Y = ∅ for

all g1, g2 ∈ G, so g1 ·B = B for all g1 ∈ G. Thus, the set of all distinct subsets of the form g ·Y ,
along with B, forms a partition of X stabilized by G, making the action of G imprimitive.
Now, suppose that G acts imprimitively on X. Then there exists a partition π(X) which
G stabilizes, which must contain some Y ∈ π(X) such that |Y | > 1, Y ⊊ X. Since this
partition is stabilized, it follows that for any g ∈ G, either g · Y = Y or (g · Y ) ∩ Y = ∅.
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Theorem 2.6.11. Suppose G acts transitively on a set X, where |X| > 1. Then G acts
primitively if and only if, for any x ∈ X, StabG(x) is a maximal subgroup of G (i.e. there
exists no group H such that StabG(x) ⊊ H ⊊ G).

Proof. Suppose ∃x ∈ X such that StabG(x) is not maximal, and let H be a subgroup such
that StabG(x) ⊊ H ⊊ G. Since G acts transitively, we get by Theorem 2.6.6 that the G-
action on X is equivalent to the G-action on G/StabG(x), and thus G acts imprimitively on
X if and only if it acts imprimitively on G/StabG(x). Let Y be the set of cosets of the form
hStabG(x), where h ∈ H. Since StabG(x) ⊊ H ⊊ G, |Y | > 1 and Y ̸= G/StabG(x). It’s also
clear that h ·Y = Y for any h ∈ H. If g /∈ H, then since gh /∈ H for any h ∈ H we have that
(g · Y ) ∩ Y = ∅. Thus, by lemma 2.6.10, G acts imprimitively on G/StabG(x) and hence on
X.

Now, suppose that G acts transitively and imprimitively on X. Then by lemma 2.6.10, there
exists a proper subset Y ⊊ X such that |Y | > 1, and for any g ∈ G, either g · Y = Y or
(g · Y ) ∩ Y = ∅. Let H = {h ∈ G | h · Y = Y }. H is clearly a subgroup of G which contains
StabG(x) for any x ∈ Y , since for any g ∈ G we get g · x = x implies that (g · Y )∩ Y ̸= ∅, so
g · Y = Y . Since Y ̸= X and g acts transitively, ∃g ∈ G such that g · Y ̸= Y . Thus, g /∈ H,
so H ̸= G. Finally, let x, y ∈ Y be distinct elements. Then ∃g ∈ G such that g ·x = y. Thus,
g ∈ H, g /∈ StabG(x), so H ̸= StabG(x), making StabG(x) not a maximal subgroup of G.

Next, we look at possibly the most important kind of group action; conjugation.

Definition 2.6.12. Let G by any group. The action of G on itself by conjugation is given
by, for any g, x ∈ G, g · x = gxg−1. The orbits of this action are called the conjugacy classes
of G.

Example 2.6.2. The conjugacy classes of Sn are all the disjoint cycle decompositions of the
same time, in the sense that two cycles are conjugate if and only if their decomposition has
the same number of disjoint cycles of each size.

We also bring up now the centralizer C(S) of a subset S of a group G, which is the set of
all elements which commute with every element in G. This can be found to be a subgroup
of G. C(G) = C is called the centre of a group. For action by conjugation, it’s clear that
StabG(x) = C(x). Thus, we get by Theorem 2.6.7 that for finite groups

|G| =
n∑
i=1

[G : C(xi)]

where xi ∈ G are representatives of the conjugacy classes of G. This is called the class
equation of a finite group. We can also note that C(x) = |G| and the conjugacy class of x is
x for elements in C, so this is also often written as

|G| = |C|+
n∑
i=1

[G : C(yi)]

where yi are representatives of the conjugacy classes which are not C. We use this now to
do a cute little proof which is often useful when working with finite groups.
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Theorem 2.6.13. Any finite group G of prime power order has a non-trivial centre.

Proof. Let |G| = pn, and let yi ∈ G be the representatives for the conjugacy classes other
than C. We know that p | |G|, and p | |C(yi)| for each yi (as |C(yi)| ̸= 1 and C(yi) is a
subgroup of G). Thus, by the class equation we must get p | |C| ⇒ |C| ≠ 1.

2.7 Free Groups*

This section will be much more informal than the rest, as a formal treatment of free groups
requires delving into a level of category theory that is best left for a more advanced course
in algebra. For a formal treatment, see [Lan05].

Definition 2.7.1. Let S be an arbitrary set. The free group on S, denoted FS, is the group of
finite strings of the elements x and x−1 for x ∈ S, along with the unit string 1. Multiplication
is concatenation of strings, with the rule that xx−1 = 1.

Example 2.7.1. The free group on two elements, F2 is the set of all strings of the letters
a, b, a−1, b−1. In it, we’d have that abb−1a−1 = 1, but this group is not commutative and
aba−1b−1 ̸= 1 cannot be simplified.

Free groups are often used to specify arbitrary finitely generated groups in a simple manner.
To show how this is done, we need the following definition.

Definition 2.7.2. Let G be a group, and S ⊆ G a subset. The normal subgroup generated by
S, denoted ⟨S⟩N , is the intersection of all normal subsets of G containing S, or equivalently
the smallest normal subgroup of G containing S.

There is unfortunately no simple way to write elements of a normal subgroup generated by
a set, as there was for the regular subgroup generated by a set. However, there is a simple
way to write elements of G/⟨S⟩N .

Definition 2.7.3. Let S be sets, and R a subset of FS. The group with generators S and
relations R is the free group S, with the addition rule enforced that any string in R is equal
to 1. The group presentation of this group is ⟨S | R⟩.

Theorem 2.7.4. ⟨S | R⟩ ∼= FS
⟨R⟩N

.

Proof. We start with the natural surjective homomorphism φ : FS → ⟨S | R⟩. Then clearly
R ⊆ ker(φ), so ⟨R⟩N ⊆ ker(φ). Let J = ker(φ)\⟨R⟩. Then φ(r) = 1 for any r ∈ J , so adding
J to R wouldn’t change ⟨S | R⟩. Thus, we must get ker(φ) = ⟨R ∪ J⟩N = ⟨R⟩N , so by the
first fundamental theorem of homomorphisms ⟨S | R⟩ ∼= FS

⟨R⟩N
as claimed.

Example 2.7.2. The presentation of the group Z/2Z× Z/2Z is ⟨a, b | a2, b2, aba−1b−1⟩.

The final things I’ll mention here is a construction called the amalgamated product.
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Definition 2.7.5. Let G,H,K be groups. The free product G∗J of two groups is FG,H , with
simplification by in-group multiplication in G or H also enforced. Let φ ∈ Hom(K,G), ψ ∈
Hom(K,H). Then the amalgamated product of G,H over K with respect to φ, ψ, which is
denoted G ∗K H, is given by

G ∗K H =
G ∗H

⟨{φ(k)ψ(k)−1}k∈K⟩N

All of these constructions are quite important in algebraic topology, but won’t be used much
by us for the remainder of this text.

2.8 Sylow’s Theorems

This section focuses on Sylow’s theorems, an important tool in classifying and understanding
the structure of finite groups. The structure and proofs in the section are primarily based on
those in [Lan05], with some inspiration taken from [Jac09]. We open, however, with a quick
detour to talk about exponents.

Definition 2.8.1. Let G be a group. The exponent of G, denoted exp(G), is the minimal
number n ∈ N such that gn = 1 for all g ∈ G. If no such number exists, we write that
exp(G) =∞.

Lemma 2.8.2. Let G be a group with exp(G) = n <∞. Then given any g ∈ G, o(g) | n.

Proof. By definition, o(g) ≤ n. Suppose that o(g) ∤ n. Then ∃k ∈ N, 0 < ℓ < o(g) such that
n = ko(g) + ℓ. Thus, since gn = 1, we get that gℓ = 1. But ℓ < o(g) is non-zero, so this is
impossible.

Lemma 2.8.3. Let G be a finite Abelian group with exp(G) = n < ∞. Then |G| | nk for
some k ∈ N.

Proof. We proceed by induction on |G|, assuming that exp(G) = n. If |G| = exp(G) = n,
then the result is trivial. Suppose that the result holds for all groups G with n ≤ |G| < m.
Let G be a group of size m, with exp(G) = n. Pick any non-trivial h ∈ G. By lemma 2.8.2,
o(h) | n, so H = ⟨h⟩ has an order which divides n. Since G is Abelian, H � G, so G/H is
again an Abelian group and exp(G/H) | n. Thus, by induction we get that |G/H| | nk for
some k ∈ N, so by Lagrange’s theorem m = [G : H]|H| | nk+1, completing the proof.

Using these results, we can start to work on Sylow’s theorems.

Definition 2.8.4. Let G be a finite group, and p a prime which divides |G|. A subgroup
H ⊆ G is called a p-subgroup if |H| = pn for some n ∈ N, and a p-Sylow subgroup if this n
is the maximal natural number such that pn | |G|.

Lemma 2.8.5. Let G be a finite Abelian group, and p a prime such that p | |G|. Then there
exists an element of G of order p.
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Proof. Again, we proceed by induction on |G|. The result is clear for |G| ≤ p. Suppose it
holds for all |G| < n, where p < n, and that |G| = n. By lemma 2.8.3, n | exp(G)k for some
k ∈ N, so p | exp(G). Since lcm{o(g) | g ∈ G} | exp(G), it follows that there exists some
g ∈ G such that p | o(g). If G is cyclic, the result is then clear, and otherwise the result then
holds by induction on H = ⟨g⟩.

Theorem 2.8.6 (Sylow I). Let G be a finite group, and p a prime number dividing the order
of G. Then there exists a subgroup H ⊆ G of order pk for each k ∈ N such that pk | |G|. In
particular, G has a p-Sylow subgroup.

Proof. Again, we proceed by induction on |G|. If |G| ≤ p then the result is trivial. Suppose
the result holds for all |G| < n, where n > p, and that |G| = n. If there exists some subgroup
H ⊊ G such that p ∤ [G : H], then the result is immediate by induction, since |H| < |G|.
Thus, we may assume that p | [G : H] for all subgroups H ⊊ G. From the class equation, we
know that

n = |C(G)|+
n∑
i=1

[G : C(xi)]

where the xi are representatives of the non-trivial conjugacy classes of G. Since p | [G : C(xi)]
for each xi, it follows that p | |C(G)|, that is G has a non-trivial centre. Then by lemma
2.8.5, there exists an element g ∈ C(G) of order p. If pk | |G| only for k = 1, we’re done.

Otherwise, we note that H = ⟨g⟩�G, so G/H is a group of order |G|
p
. Let N be the maximal

number such that pN | |G| By induction, we can find a subgroup K ′ ∈ G/H of order pk for
1 ≤ k < N . Let φ : G → G/H be the canonical quotient map, and K ′ = φ−1(K). Then
by the first fundamental theorem of homomorphisms K′

H
∼= K, so by Lagrange’s theorem

|K ′| = |K||H| = pk+1, completing the proof.

To prove the second Sylow theorem, we need one more lemma.

Lemma 2.8.7. Let G be a p-group acting on a finite set X. Then the number of x ∈ X such
that StabG(x) = G is equivalent to |X| modulo p.

Proof. Let S be the set of x ∈ X such that StabG(x) = G. Then by Theorem 2.6.7

|X| = |S|+
n∑
i=1

[G : Stab(xi)]

where the xi are representative of all the other G-orbits. Since G is a p-group, p | [G :
Stab(xi)] for each xi, which immediately gives the desired result.

Theorem 2.8.8 (Sylow’s Theorem II). Let G be a finite group, and p a prime such that
p | |G|. Then the following all hold.

1. Every p-subgroup of G is contained in a p-Sylow subgroup of G.

2. Every p-Sylow subgroup of G is conjugate, that is if P1, P2 are p-Sylow subgroups then
∃g ∈ G such that gP1g

−1 = P2.
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3. The number of p-Sylow subgroups of G is equivalent to one modulo p.

Proof. Consider the action of G on the set Γ of p-Sylow subgroups by conjugation. We give
a special name to StabG(P ), where P ∈ Γ; we call it the normalizer of P and denote it
N(P ). Let H be a p-subgroup. First, let’s suppose that H ⊆ N(P ). Then HP ⊆ N(P ) and
P �HP , so by the third fundamental theorem of homomorphisms

HP

P
∼=

H

H ∩ P
Thus, if HP ̸= P then HP is a p-subgroup with order larger than P , which is impossible.
Hence, HP = P ⇒ H ⊆ P , as was required for (1). We move now to a more general case.
Let H act on the set of all conjugate subgroups of P , called S, by conjugation. We can see
that |S| = |N(P )|

|P | , so p ∤ |S|. Thus, it follows by lemma 2.8.7 that there exists at least one

element of gPg−1 ∈ S which is unchanged by any element of H, meaning H ⊆ gPg−1 and
hence by the previous case H ⊆ gPg−1. This completes the proof of (1). If we take H to
be a p-Sylow subgroup, then |H| = |P |, so we instead get that H = gPg−1 for some g ∈ G,
giving (2). For (3), we note that since a general p-subgroup H ⊂ gPg−1 is contained in some
p-Sylow subgroup, and so no other p-Sylow subgroup is unchanged by every element of H
under conjugation. Therefore, there is exactly one element of S has StabG(x) = G, so by
lemma 2.8.7 we get |S| ≡ 1 mod p, proving (3).

We’ll end this section off by taking a look at a simple yet very powerful application of Sylow’s
theorems : the structure theorem of finite Abelian groups. First, we need to introduce the
concept of direct products.

Definition 2.8.9. Let G1, G2 be two groups. The direct product of the groups, denoted
G1 × G2 is the group whose set is G1 × G2 (the Cartesian product) and operation element-
wise multiplication in the two groups.

We’ll leave it to the reader to show that this is indeed a group, and that the direct product of
groups is associative and commutative up to isomorphism. Indeed, taking the direct product
of an arbitrary number of groups is simply taking the Cartesian product of those groups
with element-wise multiplication. Before moving on, we do need one more result on direct
products.

Theorem 2.8.10. Let G be a group and {Hi}ni=1 a finite collection of subgroups of G. Then
G ∼= H1 × · · · ×Hn if the following two conditions are met.

1. Every element of G can be expressed uniquely in the form h1 · · ·hn, where hi ∈ Hi

2. Every element of Hi commutes with every element of Hj, for all 1 ≤ i, j ≤ n, i ̸= j

Proof. Suppose {Hi}ni=1 is a collection of subgroups meeting the above conditions. The
first condition gives us a natural bijective map φ : H1 × · · · × Hn → G defined by φ :
(h1, . . . , hn) 7→ h1 · · ·hn. All that remains is to check that this is a homomorphism. Let
(h1, . . . , hn), (h

′
1, . . . , h

′
n) ∈ H1 × · · · ×Hn. Then

φ((h1, . . . , hn)(h
′
1, . . . , h

′
n)) = φ((h1h

′
1, . . . , hnh

′
n)) = (h1h

′
1) · · · (hnh′n)
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By condition (2), all the elements on the right-hand side commute, so

φ((h1, . . . , hn)(h
′
1, . . . , h

′
n)) = (h1h2 · · ·hn)(h′1 · · ·h′n) = φ((h1, . . . , hn))φ((h

′
1, . . . , h

′
n))

as required.

Theorem 2.8.11 (Structure Theorem of Finite Abelian Groups). Let G be a finite Abelian
group. Then there exist some pi, ei ∈ N such that

G ∼= Z/pe11 Z× · · · × Z/penn Z

where each pi is a prime such that peii | |G|. Furthermore, this decomposition is unique up to
the order of terms.

Proof. We start by proving existence. First, suppose that |G| = pn, for some prime p. We
proceed by induction on n. Suppose that the theorem holds for all |G| = pm, where m < n.
Let h ∈ G be an element of maximal order pN , and H = ⟨h⟩. We have by induction that
G/H ∼= ⟨g1H⟩ × · · · × ⟨grH⟩, where gi ∈ G\H and the order of each group in the product is
a power of p. We’ll first show that we can choose gi ∈ ⟨giH⟩ such that o(gi) = |⟨giH⟩|. We

know that there exists some minimal ℓ ∈ N such that gp
ℓ

i ∈ H, and a minimal q ∈ N such

that gp
ℓ

i = hzp
q
, where z ∈ N and 1 ≤ z < p. Suppose o(gi) = pr. Then clearly r ≥ ℓ, and we

get
1 = gp

r

i = (gp
ℓ

)p
r−ℓ

= hzp
q+r−ℓ

Thus, q + r − ℓ = N so o(gi) = pℓ+N−q, and by the maximality of N and Sylow II we know
that q ≥ 1, ℓ. We want for o(gi) = pℓ. This is simply achieved by multiplying gi by h

−zpq−ℓ ,
as since giH generates ⟨giH⟩ we know that o(gih) ≥ pℓ for any h ∈ H, and one can verify
that o(gih

−zpq−ℓ) ≤ pℓ. Thus, we may assume that o(gi) = |⟨giH⟩|. In this case, we define a
map φ : H ×G/H → G by the rule

φ : (hq, (ge11 H, . . . , g
er
r H)) 7→ hqge11 · · · gerr

We’ll show that this is an isomorphism, which will complete the proof in this case. This map
is bijective if it is surjective by a simple counting argument, since |G| = |H|[G : H]. To check
surjectivity, pick any x ∈ G. Then there exists some y ∈ H and e1, . . . , er ∈ N such that
x = yge11 · · · genn . Since H is cyclic, y is a power of h, and thus we get the desired surjectivity.
We just then need to show that it’s a homomorphism. Indeed, since o(gi) = |⟨giH⟩| we get

φ((hq, (ge11 H, . . . , g
er
r H))(hℓ, (gx11 H, . . . , g

xr
r H))) = φ((hq+ℓ, (ge1+x11 H, . . . , ger+xrr H)))

= hq+ℓge1+x11 · · · ger+xrr = φ((hq, (ge11 H, . . . , g
er
r H)))φ((hℓ, (gx11 H, . . . , g

xr
r H)))

as required.

Next, we prove existence in the general case. Since G is Abelian, we get by Sylow II that
there exists a unique pi-Sylow subgroup Pi of G for each prime pi | |G|. By the above case, it
suffices to prove that G ∼= P1×· · ·×Pn. By Theorem 2.8.10, since G is Abelian it suffices for
this to prove that each element of G can be uniquely expressed as a product of one element
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from each Pi. Indeed, since
∏n

i=1 |Pi| = |G|, uniqueness comes for free with existence of the
representation as a product. Again, we can proceed by induction on |G|. Suppose this holds
for groups of size less than G. Since G is Abelian, P1 � G, so G/P1 is an Abelian group
with p-Sylow subgroups being the images of P2, . . . , Pn under the quotient map. Pick any
g ∈ G. Then there exists h ∈ G\P1, k ∈ P1 such that g = hk. By the inductive hypothesis,
there exists h2 ∈ P2, . . . , hn ∈ Pn such that hP1 = (h2 · · ·hn)P1. Thus, ∃h1 ∈ P1 such that
g = h1 · · ·hn, as required. This completes the proof of existence.

Finally, we prove uniqueness. Suppose G ∼= Z/pe11 Z × · · · × Z/penn Z, with isomorphism
φ : Z/pe11 Z × · · · × Z/penn Z → G. By Sylow I, φ(Z/peii Z) is contained in the pi-Sylow
subgroup, so it suffices to show uniqueness of the decomposition of each pi-Sylow subgroup.
Hence, we may assume that |G| = pk for some prime p, and that p1 = p2 = · · · = pn = p.
In this case, let N be the number of distinct cyclic subgroups of G of order exp(G) = pm.
It follows immediately that ei ≤ m, and furthermore that each ei = m in our decomposition
corresponds to a distinct such cyclic subgroup. In fact, one can also see that if j is the number
of ei = m, then the number of distinct cyclic subgroups of order pm in our decomposition is

j∑
f=1

(pm − pm−1)(pk−fm) = N

giving a unique solution for j (as
∑j

f=1(p
m − pm−1)(pk−fm) strictly increases with j). We

can then divide out all the terms of the form Z/pmZ (or their images) from both sides, and
repeat this argument to get the desired result.

Note. This clever proof is certainly not my own, but I forgot to write down the source when
I initially wrote it up and was never able to find it again. I’ve provided here another source
giving a similar proof [Lan11]. If you are able to find the original source of this proof, please
let me know!

2.9 Solvable Groups

This section of a combination of similar sections in [Lan05] and [Jac09]. We start with a
series of definitions.

Definition 2.9.1. Let G be a group, and {Gi}ni=1 a collection of subgroups. If G = G0 ⊇
G1 ⊇ · · · ⊇ Gn, we call this sequence of groups a tower of subgroups. A tower of subgroups
is normal if Gi+1 � Gi for all 0 ≤ i < n, Abelian if it is normal and Gi/Gi+1 is Abelian for
all 0 ≤ i < n, and cyclic if it is normal and Gi/Gi+1 is cyclic for all 0 ≤ i < n.

Note. We assume that groups are never repeated in a tower. This results in essentially no
loss of information, since we can always just toss out the repeated group, and makes proofs
a little easier.

At this point, we’re already prepared to give the definition of a solvable group.

Definition 2.9.2. A group G is solvable if it has an Abelian tower of subgroups, which
terminates with the subgroup {1}.
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Note. The last requirement in this definition is primarily for convenience, as we can always
just add {1} to the end of any tower that doesn’t already have it.

We would also like to be able to have some notion of how ”fine” or ”course” a normal tower
of subgroups is, leading us to the following definition.

Definition 2.9.3. Let G be a group, and {Gi}ni=1 a normal tower of subgroups. A refinement
of this tower is any normal tower of subgroups of G which contains {Gi}ni=1, and is called
proper if it contains subgroups which are not in the original tower. A normal tower of
subgroups is called a composition series if Gn = {1} and the tower has no proper refinements.

Note. There’s another way to characterize composition series. We can note that a normal H
subgroup of G is maximal if and only if G/H is simple, that is only has normal subgroups of
G/H and the trivial group. Thus, a composition series is a normal tower terminating at the
trivial group such that each Gi/Gi+1 is simple.

It turns out that we can simplify our consideration of solvable groups considerably with these
refinements. To begin with, we’ll need the following lemmas.

Lemma 2.9.4. Let G,H be groups, φ ∈ Hom(G,H) a surjective homomorphism, and G =
G0 ⊇ G1 ⊇ · · · ⊇ Gn ⊇ ker(φ) a tower of subgroups. This tower is normal/Abelian/cyclic if
and only if the tower H ⊇ φ(G1) ⊇ · · · ⊇ φ(Gn) is normal/Abelian/cyclic.

Proof. By the second fundamental theorem of homomorphisms, Gi+1 � Gi if and only if
φ(Gi+1)� φ(Gi), for all 0 ≤ i < n, so the normal part of this lemma is clear. Furthermore,
we know from this theorem that

Gi

Gi+1

∼=
φ(Gi)

φ(Gi+1)

which gives us the Abelian/cyclic part of the lemma.

Lemma 2.9.5. Let G be a solvable group, and H �G. Then G/H is solvable. Furthermore,
if G is any group and there exists H �G such that G/H, H are solvable, then G is solvable.

Proof. Suppose that G is solvable, and H �G. Since G is solvable, it has an Abelian tower
G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = {1}. Let π : G → G/H, and set Hi = π(Gi). We’ll first show
that Hi+1�Hi. Pick any gi ∈ Gi, gi+1 ∈ Gi+1. Then (giH)−1(gi+1H)(giH) = (g−1

i gi+1gi)H ∈
Gi+1H, as required. Next, we’ll show that there exists a surjective homomorphism from
Gi/Gi+1 to Hi/Hi+1, implying the latter is Abelian and proving that G/H is solvable. We’ll
define this map by φ : gGi+1 7→ πi(gH), where πi : Hi → Hi/Hi+1 is the standard projection
map. We show that this is a homomorphism first.

φ((g1Gi+1)(g2Gi+1)) = φ((g1g2)Gi) = πi((g1g2)H) = πi(g1H)πi(g2H) = φ(g1Gi+1)φ(g2Gi+1)

That it is surjective is immediate. Now, suppose that G is some group and there exists
H ∼= G such that G/H is solvable. Let G/H = H0 ⊇ H1 ⊇ · · · ⊇ Hn = {1} be an Abelian
tower, and π : G → G/H the projection map. Then by the second fundamental theorem
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of homomorphisms, we can get a normal tower of subgroups G = G0 = π−1(H0) ⊇ G1 =
π−1(H1) ⊇ · · · ⊇ Gn = π−1(Hn) = H. Furthermore,

Gi

Gi+1

∼=
Hi

Hi+1

is Abelian, so since H is solvable we’re done.

Theorem 2.9.6. A finite group G is solvable if and only if it has a cyclic composition series.

Proof. The having a cyclic composition series implies that a group is solvable is immediate.
Now, suppose that G is a solvable finite group. First, we show that G has an Abelian
composition series. Since G is solvable, it has an Abelian tower G = G0 ⊇ G1 ⊇ · · · ⊇ Gn =
{1}. Any refinement of this tower remains Abelian, so since G is finite we can take a maximal
refinement to get an Abelian composition series. Thus, we may assume that our Abelian tower
is a composition series. Suppose Gi/Gi+1 were not cyclic. Then since its Abelian, picking
any non-trivial x ∈ Gi/Gi+1 we’d get a normal subgroup Gi+1 ⊊ π−1(⟨x⟩) ⊊ Gi, where
π : Gi → Gi+1 is the standard projection map. But this contradicts our assumption that the
normal tower was a composition series.

Note. Since cyclic simple groups are necessarily of prime power order, this also implies that
the composition series has Gi/Gi+1

∼= Z/piZ, where pi are prime.

This can be strengthened even further, there’s a notion in which all composition series are
equivalent. Thus, a finite would group would be solvable if and only if all of its composition
series are cyclic. Let’s work towards proving this equivalence now, following [Lan05].

Lemma 2.9.7 (Buttefly Lemma). Let G be a group, U, V ⊆ G subgroups, and u� U, v � V
normal subgroups. Then

1. u(U ∩ v)� u(U ∩ V )

2. (u ∩ V )v � (U ∩ V )v

3. u(U∩V )
u(U∩v)

∼= (U∩V )v
(u∩V )v

Proof. This is our first instance of proof by pretty picture.

u(U ∩ V ) (U ∩ V )v

U ∩ V

u(U ∩ v) (u ∩ V )v

(u ∩ V )(U ∩ v)
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First, we’ll show that the intersection of two lines going down is the intersection of two groups,
and the intersection of two lines going up is the group generated by the two groups. Clearly
U ∩V ⊆ u(U ∩V )∩ (U ∩V )v. Suppose g ∈ u(U ∩V )∩ (U ∩V )v. Then g = xy = wz, where
x ∈ u, y, w ∈ U ∩ V, z ∈ v. Thus, x = w(zy−1) = (wzw−1)(wy−1). Since z ∈ v and w ∈ V ,
k = wzw−1 ∈ v. Since y−1, w ∈ U ∩V , wy−1 = r ∈ U ∩V , so x ∈ u∩v(U ∩V )⇒ (v∩U)(U ∩
V )⇒ x ∈ U ∩V , and hence g ∈ U ∩V . Therefore, U ∩V = u(U ∩V )∩ (U ∩V )v, as claimed.
We can again see that u(U ∩v)∩ (u∩V )v ⊇ (u∩V )(U ∩v). Suppose g ∈ u(U ∩v)∩ (u∩V )v.
Then g = xy = wz, where x ∈ u, y ∈ U ∩ v, w ∈ u ∩ V, z ∈ v. Thus, x = wzy−1 ∈ V , so
x ∈ u ∩ V and hence u(U ∩ v) ∩ (u ∩ V )v = (u ∩ V )(U ∩ v) as claimed. Again, we can see
that (u ∩ V )(U ∩ v) ⊆ (U ∩ V ) ∩ u(U ∩ v). Suppose g ∈ (U ∩ V ) ∩ u(U ∩ v). Then g = xy,
where x ∈ u and y ∈ U ∩ v. Since g ∈ U ∩ V , it follows that x = gy−1 ∈ V , so x ∈ u∩ V and
hence (u ∩ V )(U ∩ v) = (U ∩ V ) ∩ u(U ∩ v) as claimed. The remaining case proceeds by an
identical argument. The claim about lines going up being generating groups is clear. Second,
we can see from the diagram that (1) and (2) are equivalent, so we prove only (1). Suppose
g ∈ u(U ∩ V ), h ∈ u(U ∩ v). Then g = xy, h = wz, where x,w ∈ u, y ∈ U ∩ V, z ∈ U ∩ v.
Thus,

ghg−1 = (xy)(wz)(y−1x−1) = x(ywy−1)(yzy−1)x−1

r = ywy−1 ∈ u, k = yzy−1 ∈ U ∩ v, so we get

ghg−1 = xrkx−1 = (xr)(kx−1k−1)k

xr ∈ u, kx−1k−1 ∈ u, so ghg−1 ∈ u(U ∩v) and hence u(U ∩v)�u(U ∩V ), as claimed. Finally,
we prove (3). By the third fundamental theorem of homomorphisms

u(U ∩ V )

u(U ∩ v)
=

(U ∩ V )u(U ∩ V )

u(U ∩ v)
∼=

U ∩ V
u(U ∩ v) ∩ (U ∩ V )

=
U ∩ V

(u ∩ V )(U ∩ v)

=
U ∩ V

(u ∩ V )v ∩ (U ∩ V )
∼=

(U ∩ V )(u ∩ V )v

(u ∩ V )v
=

(U ∩ V )v

(u ∩ V )v

as claimed.

Now, we need to define what we mean when we say two towers are equivalent.

Definition 2.9.8. Let G be a group, and G = G1 ⊇ G2 ⊇ · · · ⊇ Gn = {1}, G = H1 ⊇ H2 ⊇
· · · ⊇ Hm = {1} be two normal towers. We call these towers equivalent if r = s and there

exists σ ∈ Sn−1 such that Gi
Gi+1

∼= Hσ(i)
Hσ(i)+1

for all 1 ≤ i < n.

Which will allow us to, finally, develop results on these equivalences.

Theorem 2.9.9 (Schreier’s Theorem). Suppose G = G1 ⊇ G2 ⊇ · · · ⊇ Gn = {1}, G = H1 ⊇
H2 ⊇ · · · ⊇ Hm = {1} are two normal towers. Then they have equivalent refinements.

Proof. For each 1 ≤ i < n, 1 ≤ j ≤ m, define Gij = Gi+1(Gi ∩ Hj). We can note that
Gi1 = Gi, Gim = Gi+1, so by the butterfly lemma

G ⊇ G12 ⊇ · · · ⊇ G1m ⊇ G21 ⊇ · · · ⊇ G(n−1)1 ⊇ · · · ⊇ {1}
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is a refinement of the first normal tower. Similarly, setting Hji = (Hj ∩ Gi)Hj+1 for all
1 ≤ i ≤ n, 1 ≤ j < m, we get

G ⊇ H12 ⊇ · · · ⊇ H1n ⊇ H21 ⊇ · · · ⊇ H(m−1)1 ⊇ · · · ⊇ {1}

is a refinement of the second normal tower. By the butterfly lemma

Gij

Gi(j+1)

∼=
Hji

Hj(i+1)

for all 1 ≤ i < n, 1 ≤ j < m completing the proof.

Theorem 2.9.10 (Jordan-Hölder). If G is solvable, then any two composition series of G
are equivalent

Proof. By Schreier’s theorem, the two composition series must have equivalent refinements.
But composition series have no proper refinements, so it follows that the composition series
are equivalent.

At this point, we’ve proven everything I find particularly enlightening (at least at this point
in my life) about solvable groups, without of course getting into their major role in Galois
theory. We’ll end this section by taking a look at the connection between solvability and
commutators, following [Jac09].

Definition 2.9.11. Let G be a group and g, h ∈ G. We denote the commutator by

[g, h] = g−1h−1gh

The derived group G′ ⊆ G is the subgroup generated by all the commutators of two elements
in G. We define the n-th derived group iteratively by G(n) = (G(n−1))′.

Lemma 2.9.12. For any k ∈ N, G(k) �G.

Proof. We can note that since [g, h]−1 = h−1g−1hg = [h, g], G′ consists of elements of the
form [g1, h1] · · · [gn, hn], where gi, hi ∈ G. Let H be another group, and φ ∈ Hom(G,H).
Then φ([g, h]) = [φ(g), φ(h)] ∈ H ′, so φ(G′) ⊆ H ′. Now, pick any K � G and a ∈ G. The
map φ : g 7→ aga−1 induces an automorphism of K, so φ(K ′) ⊆ K ′. Since a was arbitrary,
this implies that K ′ �G. In particular, G�G⇒ G′ �G⇒ · · · ⇒ G(k) �G.

Lemma 2.9.13. G/G′ is Abelian and if K �G is such that G/K is Abelian then G′ ⊆ K.

Proof. Let π ∈ Hom(G,G/G′) be the projection map, and pick any g, h ∈ G. Then
π(g)π(h) ≡ g(g−1hgh−1)h ≡ hg ≡ π(h)π(g), so G/G′ is Abelian. Now, suppose that K �G
is such that G/K is Abelian, and pick any g, h ∈ G. Then

(g−1h−1gh)K = (gK)−1(hK)−1(gK)(hK) = (gK)−1(gK)(hK)−1(hK) = K

so g−1h−1gh ∈ K ⇒ G′ ⊆ K, as was to be shown.
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Theorem 2.9.14. A group G is solvable if and only if there exists n ∈ N such that G(n) =
{1}.

Proof. One direction is simple, as G ⊇ G′ ⊇ · · · ⊇ G(n) is an Abelian tower by lemmas 2.9.12
and 2.9.13. Now, suppose that G is solvable, and that G = H0 ⊇ H1 ⊇ · · · ⊇ Hk = {1} is an
Abelian tower. By lemma 2.9.13, G′ ⊆ H1, so G

′′ ⊆ H ′
1 ⊆ H2 and so on, forcing G(k) = {1}

as desired.

Corollary 2.9.14.1. Any subgroup H of a solvable group G is solvable.

Proof. Since G is solvable, there exists some n ∈ N such that G(n) = {1}. For any k ∈ N,
H(k) ⊂ G(k). Thus, H(n) = 1, making H solvable.

2.10 Group Representations*

As you may have surmised from the past chapter, understanding the structure of groups can
be quiet difficult. One of the ways of getting around this is group representations, which we’ll
introduce (but not develop all that much) here. The study of representations is a field unto
itself; those interested should look at [Lan05] or one of the numerous textbooks dedicated to
the subject.

Given a vector space V , one can see that the set of all invertible linear maps from V to V , with
composition as multiplication, forms a group. Since we understand linear transformations
far more than we do groups, our aim is to shift the study of groups to the study of linear
algebra.

Definition 2.10.1. Let G be a group and V a vector space. A representation of G in V is
the image of a homomorphism from G to the invertible linear transformations of V to itself.

Example 2.10.1. Given any group G and vector space V , we have the trivial representation
given by φ : g 7→ IdV . Needless to say this one is not particularly useful.

Example 2.10.2. Consider the group Γ = {ei 2πjn }1≤j≤n, where the operation is multiplication.
We can represent this in GL2(C) using the map

φ : ei
2πj
n 7→

(
1 0

0 ei
2πj
n

)
There are also many ways of classifying representations, we introduce some of them below.

Definition 2.10.2. Let G be a group represented in a vector space V , with the associated
homomorphism being φ. A representation is said to irreducible if, given any non-trivial
subspace U ⊊ V , there exists some v ∈ U and g ∈ G such that φ(g)(v) /∈ U . Otherwise, it is
called reducible. A representation is called faithful if φ is injective.
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Chapter 3

Rings

3.1 Basic Definitions

When studying group theory, two of our most common examples were the monoids (Z,+)
and (Z∗, ·) (non-zero integers under multiplication). Of course, there is something rather
unnatural about treating these two monoids as separate objects; we know intuitively that
they are parts of a single object, the integers. Our resolution to this is the ring.

Definition 3.1.1. A ring R is a set with elements 0, 1 ∈ R (which we call the zero and
identity) and binary operations +, · such that

1. (R,+, 0) is an Abelian group.

2. (R, ·, 1) is a monoid.

3. For any x, y, z ∈ R, distributivity is respected. That is,

(x+ y) · z = x · z + y · z
z · (x+ y) = z · x+ z · y

Note. Like with groups, we often drop the · when writing products. We will often denote
R\{0} by R∗. The definition of a ring will vary from text to text, some older sources do not
assume that all rings have an identity. Others call rings without an identity rngs (this is a
ploy used by [Jac09]). Either way, it will not be of much interest to us here. All of our rings,
by assumption, will have an identity.

Example 3.1.1. Perhaps the best example of a ring is Mn(R), the set of n× n real matrices
with matrix addition and multiplication. Our identity here is the identity matrix, and our
zero the zero matrix. Note that multiplication here is not commutative: assuming it to be
so is a common mistake when working with rings.

There are many types of properties a ring can have, we list them here.

Definition 3.1.2. A ring R such that 0 ̸= 1 is

1. Commutative if (R, ·, 1) is Abelian.
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2. A (integral) domain if (R∗, ·, 1) is a sub-monoid.

3. A division ring if (R∗, ·, 1) is a sub-group.

4. A field if it is a commutative division ring.

Note. The assumption that 0 ̸= 1 here is very common, so much so that it will often be
assumed without being stated.

We’ll come back to all of these in a moment to explore their connections more deeply. For
now, we note some basic results on arithmetic in rings.

Proposition 3.1.3. Let R be a ring, and x, y ∈ R ring elements. Then

1. 1x = x1 = x

2. 0x = x0 = 0

3. (−1)x = −x

4. If xy = yx, then for any n,m ∈ N we get xnym = ymxn, and

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k

The proof of these basic identities is left to the reader. Like with groups, we of course have
subrings and generated subrings.

Definition 3.1.4. A subring S ⊆ R of a ring R is a subset which is also a ring. For an
arbitrary subset A ⊂ R, then subring generated by A, ⟨A⟩, is the smallest subring of R
containing A.

Like with group and monoids, the intersection of subrings is a subring, and hence ⟨A⟩ is the
intersection of all subrings of R containing A. The elements of ⟨A⟩ are 0, 1, and all finite
sums of finite products of elements of A. With these basic concepts out of the way, we return
to the problem of characterizing the properties of rings.

Definition 3.1.5. If a ∈ R is such that there exists some non-zero b ∈ R for which ab = 0
(ba = 0), then a is called a left (right) zero-divisor of b.

Theorem 3.1.6. The following are equivalent (where R is a ring and R ̸= 0).

1. R is a domain.

2. R has no non-zero zero-divisors.

3. For any x, y, z ∈ R, xy = xz ⇒ y = z or x = 0 and xy = zy ⇒ x = z or y = 0. This
condition is called the cancellation law.
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Proof. First, suppose that R is a domain. Then since R∗ is a sub-monoid, the product of
any pair of non-zero elements is non-zero, and hence R has only 0 as a zero divisor. Now,
suppose that R has no non-zero zero-divisors. If xy = xz, then x(y− z) = 0, so either x = 0
or y − z = 0⇒ y = z. If xy = zy, then (x− z)y = 0, so either y = 0 or x− z = 0⇒ x = z.
Finally, suppose that the cancellation law holds, and pick any pair of non-zero elements
x, y ∈ R. If xy = 0, then xy = x0⇒ x = 0 or y = 0, a contradiction. Thus, xy ∈ R∗, making
R∗ a sub-monoid.

There are two final objects to define before we move on.

Definition 3.1.7. The subgroup of (R∗, ·, 1) consisting of elements with a multiplicative
inverse is called the units of R, and denoted

R× = {x ∈ R | ∃y ∈ R, xy = yx = 1}

Note. We again denote the multiplicative inverse of x ∈ R by x−1.

Definition 3.1.8. Let R,R′ be rings. A ring homomorphism is a map φ : R → R′ which
is a group homomorphism (R, 0,+) → (R′, 0′,+′) and a monoid homomorphism (R, 1, ·) →
(R′, 1′, ·′). The set of all ring homomorphisms between two rings is denoted Hom(R,R′)

Note. By definition, we must get φ(0) = 0′ and φ(1) = 1′.

3.2 Matrix Rings

We start with one of the simplest yet most important types of rings, the matrix ring. This
section is based on a similar one in [Jac09].

Definition 3.2.1. Let R be an arbitrary ring, and n ∈ N. The matrix ring of R, denoted
Mn(R), is the set of all n × n matrices with entries in R. Endowed with standard matrix
addition and multiplication, Mn(R) is a ring.

Note. We can embed R in Mn(R) via the monomorphism x 7→ diag(x, x . . . , x). Thus, if
A ∈Mn(R), by xA we mean diag(x, x, . . . , x)A. We can pull a similar trick and map Z into
any ring R, with the map f ∈ Hom(Z, R) being defined by f(1) = 1. In this notation, for
any given n ∈ Z we write nx for f(n)x.

Note. Even if R is commutative, Mn(R) will be non-commutative if n ≥ 2.

We denote by eij the matrix with entries all zero except in the i, jth position. Note then that

(aij) =
∑
i,j

aijeij

I’ll cut right to the chase, let’s figure out determinants shall we?

Theorem 3.2.2. For any commutative ring R, there exists a unique function f :Mn(R)→ R
such that
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1. f(Idn) = 1.

2. If A′ is the matrix A with its rows permuted by some σ ∈ Sn, then f(A′) = sgn(σ)f(A).

3. f is linear in each row of Mn(R), keeping all other rows fixed.

Proof. Suppose such a function f existed. Pick an arbitrary matrix A = (aij). Then

f(A) = f
(∑

i,j

aijeij

)
=

n∑
k=1

a1kf
(
e1k +

n∑
i=2

n∑
j=1

aijeij

)
=

n∑
k1=1

· · ·
n∑

kn=1

a1k1 · · · anknf(e1k1 + · · ·+ enkn)

Note that if some ki = kj in any given sum, then there’s a permutation of the rows of
e1k1 + · · ·+ enkn of sign one which doesn’t change the matrix. That is, we get

f(e1k1 + · · ·+ enkn) = −f(e1k1 + · · ·+ enkn)

Thus, all the terms with ki = kj for some 1 ≤ i < j ≤ n cancel out to zero, and we’re left
with

f(A) =
∑
σ∈Sn

a1σ(1) · · · anσ(n)f(e1σ(1) + · · ·+ enσ(n))

But of course each e1σ(1) + · · ·+ enσ(n) is just the identity with its rows permuted by σ, so

f(A) =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)f(Idn) =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)

Therefore, f is unique if it is well-defined. We just need to check then that the function

f(A) =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)

satisfies all three properties. This verification is not too difficult, and left to the reader.

We call this unique function the determinant, and denote it det. This is of course the same
determinant as you would have encountered in linear algebra, although perhaps it doesn’t
seem that way for now. Let’s look at different ways of formulating this same function.

Definition 3.2.3. Let A ∈Mn(R). The i, jth minor of A, denotedMA,i,j, is the determinant
of the matrix obtained be removing the ith row and jth column of A, multiplied by (−1)i+j.

This definition leads to the determinant which you may be more familiar with. Before that
though, we need a quick lemma.

Proposition 3.2.4. If R is a commutative ring, then properties (2) and (3) of det also hold
for columns.
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Note. This hints at the fact that our choice to define the determinant properties in terms of
columns in Theorem 3.2.2 was arbitrary. In fact, it would be entirely equivalent to phrase
Theorem 3.2.2 in terms of columns, and then re-phrase and prove the lemma 3.2.4 in terms
of rows.

Corollary 3.2.4.1. If R is commutative, then for any A ∈Mn(R) and 1 ≤ i ≤ n

det(A) =
n∑
j=1

aijMA,i,j

and

det(A) =
n∑
j=1

ajiMA,j,i

Proof. We note that

det(A) =
n∑
j=1

aij det
(
eij + A−

∑
k ̸=j

eik

)
Let’s examine eij + A−

∑
k ̸=j eik more closely. Each of these is a matrix of the form

a11 · · · a1(j−1) a1j a1(j+1) · · · a1n
...

...
...

...
...

...
...

a(i−1)1 · · · a(i−1)(j−1) a(i−1)j a(i−1)(j+1) · · · a(i−1)n

0 · · · 0 1 0 · · · 0
a(i+1)1 · · · a(i+1)(j−1) a(i+1)j a(i+1)(j+1) · · · a(i+1)n

...
...

...
...

...
...

...
an1 · · · an(j−1) anj an(j+1) · · · ann


We can apply a row and column swap to this to end up with the matrix

1 · · · 0 0 0 · · · 0
...

...
...

...
...

...
...

a(i−1)j · · · a(i−1)(j−1) a(i−1)1 a(i−1)(j+1) · · · a(i−1)n

a1j · · · a1(j−1) a11 a1(j+1) · · · a1n
a(i+1)j · · · a(i+1)(j−1) a(i+1)1 a(i+1)(j+1) · · · a(i+1)n

...
...

...
...

...
...

...
anj · · · an(j−1) an1 an(j+1) · · · ann


It’s clear from the permutation definition of the determinant (and the row/column properties

it satisfies) then that det
(
eij + A −

∑
k ̸=j eik

)
is (−1)i+j multiplied by the determinant of

the (1,1) minor of the above matrix. But of course that’s just MA,i,j, giving us the desired
result. The result for column expansion is proved in an essentially identical manner.
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The determinant has one more relevant property, the proof of which we omit1.

Proposition 3.2.5. det : Mn(R) → R is a monoid homomorphism with respect to matrix
multiplication.

Note. This is just a very fancy way of saying det(AB) = det(A) det(B). The point of viewing
it in the above manner is that we can then embed R intoMn(R), giving us a natural map det :
Mn(R)→Mn(R) defined by (abusing notation a bit) det(A) = diag(det(A), . . . , det(A)).

We need one more result before we can cover the main application of the determinant.

Lemma 3.2.6. Suppose R is commutative, A ∈Mn(R), and 1 ≤ i, j ≤ n are such that i ̸= j.
Then

n∑
k=1

aikMA,j,k = 0

n∑
k=1

akiMA,k,j = 0

Proof. We prove only the first identity, the proof for the second is essentially the same. Note
that by corollary 3.2.4.1, the first expression is just the determinant of the matrix A with
its jth row replaced by its ith row. Since i ̸= j, such a matrix has a repeated row, which by
property (2) of determinants implies it has determinant zero.

Let us now cover the aforementioned application of determinants, invertibility and adjugate
matrices.

Definition 3.2.7. Let A ∈ Mn(R), where R is commutative. The cofactor matrix of A,
denoted adj(A), is the n× n matrix who’s (i, j)th entry is MA,j,i.

Note. [Jac09] calls this the adjoint matrix, which is terrible form and should not be done.

Theorem 3.2.8. Suppose R is commutative and A ∈ Mn(R). Then A is invertible if and
only if det(A) is a unit, and the inverse of A (if it exists) is det(A)−1adj(A).

Note. In this statement, and its proof, we use det(A) to refer both to the determinant of a
matrix and the embedding of that determinant back into Mn(R).

Proof. First, suppose that A is invertible. Then by proposition 3.2.5 we get 1 = det(AA−1) =
det(A) det(A−1), so det(A) must be a unit. Now, suppose that det(A) is a unit. For any
1 ≤ i, j ≤ n, we get

(Aadj(A))ij =
n∑
k=1

aik(adj(A))kj =
n∑
k=1

aikMA,j,k

Thus, by lemma 3.2.6 and corollary 3.2.4.1 we conclude that Aadj(A) = det(A). A sim-
ilar calculation implies that adj(A)A = det(A), so since det(A) is a unit we get A−1 =
det(A)−1adj(A), as required.

In particular, this is just the familiar result from an introductory linear algebra course.

Corollary 3.2.8.1. If F is a field, then A ∈Mn(F ) is invertible if and only if det(A) ̸= 0.
1The proof is basically symbol pushing
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3.3 Ideals and Quotient Rings

As will become a common theme in this text, we wish now to replicate the homomorphism
theorems for groups in the setting of rings. In order to do this, we need to figure out how to
construct quotient rings. To that end, let us consider a ring R with subring A. Ideally, we
would like for the following equations to hold in R/A, for any x, y ∈ R

(x+ A) + (y + A) = (x+ y) + A, (x+ A)(y + A) = xy + A

The first of these we get for free, in particular it’s just a manifestation of the additive group
in the ring being Abelian, and all subgroups of Abelian groups being normal. The second is
not at all guaranteed, leading us to the following definition.

Definition 3.3.1. A left (right) ideal I ⊆ R is a sub-ring of R such that RI ⊂ I (IR ⊂ I).
A subset which is both a left and right ideal is simply called an ideal.

Note. R is necessarily an ideal of R.

Ideals are in fact the structure we need to generate quotient rings. Indeed, one can expand2

to get

(x+ A)(y + A) = xy + xA+ Ay + A2

so we need a guarantee that xA,Ay ⊂ A, which is exactly to say that A is an ideal.

Definition 3.3.2. Let R be a ring and I ⊂ R an ideal. The quotient ring R/I is the quotient
group with multiplication defined by, for any x, y ∈ R

(x+ I)(y + I) = xy + I

Again, that this is a well-defined ring follows from the properties of an ideal. That being
said, let us explore more properties of ideals.

Proposition 3.3.3. Let R be a ring, and {Ij}j∈J a collection of ideals in R. Then
⋂
j∈J Ij ⊂

R is an ideal.

Proof. That it’s an additive subgroup follows from Theorem 2.1.5. We just need to check
then closure under multiplication. Pick any a ∈

⋂
j∈J Ij and x ∈ R. Then for each Ij, a ∈ Ij,

and hence xa, ax ∈ Ij. It follows that xa, ax ∈
⋂
j∈J Ij, as required.

This, along with the above note about R being an ideal of itself, allows us to define the
sub-ring generated by a set.

Definition 3.3.4. Let R be a ring, and S ⊂ R. The ideal generated by S, denoted (S), is
the smallest ideal in R containing S (i.e. the intersection of all ideals in R containing S).

Like with rings and monoids, we can explicitly write out the elements of this ideal.

2Strictly speaking this is not a ”proper” expansion, but you get the idea.
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Proposition 3.3.5. Let R be a ring, and S ⊂ R. Then

(S) =
{∑
a∈S

xaaya | xa, ya ∈ R
}

where all the above sums have finitely many non-zero terms.

Note. The above proposition and definition have fairly immediate equivalent formulations
for right and left ideals.

The proof of this is left to the reader.

Note. I’m going to be doing a lot more ”left to the reader” or ”it is clear” explanations from
now on. The hope is that the rigour of the previous section has given you the intuition to
follow and be comfortable with such explanations.

3.4 Homomorphism Theorems

The theorems so nice we cover them twice. These are the theorems presented in [Jac09],
although the order and proofs have been changed. We start with a quick lemma.

Lemma 3.4.1. Let φ ∈ Hom(R,R′), where R,R′ are rings. Then ker(φ) ⊂ R is an ideal.

Proof. That it’s an additive subgroup is immediate by a similar result on group homomor-
phisms, so it suffices to show that R ker(φ), ker(φ)R ⊂ ker(φ). To that end, pick any r ∈
R, x ∈ ker(φ). Then φ(rx) = φ(r)φ(x) = 0φ(x) = 0, and φ(xr) = φ(x)φ(r) = φ(x)0 = 0, so
rx, xr ∈ ker(φ), as required.

No point in wasting time, let’s jump right into these.

Theorem 3.4.2 (First Fundamental Theorem of Homomorphisms). Let φ : R → R′ be a
ring homomorphism. Then the natural projection map p : R 7→ R/ ker(φ) is a ring homomor-
phism, and the map f : R/ ker(φ)→ Im(φ) given by f : x+ ker(φ) 7→ φ(x) is a well-defined
ring isomorphism. Finally, the following diagram commutes.

R R′

R/ ker(φ)

p

φ

f

Proof. First, pick any x, y ∈ R. Then p(xy) = xy + I = (x + I)(y + I) (here we’re doing
arithmetic with cosets), and p(x + y) = (x + I) + (y + I) = (x + y) + I, making p a ring
homomorphism. f is certainly a homomorphism if well-defined (by an essentially identical
check), so we check instead that it is indeed well-defined. Pick any x, y ∈ R such that
x+ker(φ) = y+ker(φ). Then ∃z ∈ ker(φ) such that x = y+ z. Thus, φ(x) = φ(y)+φ(z) =
φ(y), making f well-defined. Finally, we show that f is an isomorphism onto Im(φ) (the above
diagram commuting is immediate from this). But this is immediate from our verification of
f being well-defined.
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Theorem 3.4.3 (Second Fundamental Theorem of Homomorphisms). Suppose φ : R → R′

is a surjective ring homomorphism. Then

1. An additive subgroup S ⊂ R containing ker(φ) is a subring (ideal) of R if and only if
φ(S) is a subring (ideal) of R′.

2. The map S 7→ φ(S) on subrings (ideals) of R containing ker(φ) is a bijection onto
subrings (ideals) of R′.

3. If I ⊂ R is an ideal containing ker(φ), then R/I ∼= R′/φ(I).

Proof. We start with the first statement. If S is a subring (ideal), then since φ is surjective
it is immediate that φ(S) is a subring (ideal). Now, suppose that φ(S) is a subring. Pick
any x, y ∈ S. Then φ(xy) = φ(x)φ(y) ∈ φ(S), so it follows that there exists some s ∈ S, z ∈
ker(φ) such that xy = s + z. But of course ker(φ) ⊂ S, so this implies that xy ∈ S, and
hence S is a subring as it is an additive subgroup. Suppose further that φ(S) is an ideal.
Pick any x ∈ S, r ∈ R. Then φ(xr) = φ(x)φ(r) ∈ φ(S), and similar with φ(rx). Thus,
both differ from an element of S only by some element of ker(φ), which again means that
xr, rx ∈ S and hence S is an ideal.

Now for the second statement. Suppose that S, S ′ are two subrings (ideals) of R containing
ker(φ). Then φ(S) = φ(S ′) implies that any element of S not in S ′ differs only by addition
of an element in ker(φ), and vice-versa. But of course both subrings (ideals) contain ker(φ),
so this implies that S = S ′, and hence S 7→ φ(S) is injective. Now, suppose that S ′ ⊂ R′

is a subring (ideal). It suffices to show that φ−1(S ′) is a subring (ideal). But of course φ
is an additive group homomorphism and S ′ an additive subgroup, so φ−1(S ′) is an additive
subgroup of R and our result follows from part (1) of this theorem.

Finally, we prove the third statement. Suppose that I ⊂ R is an ideal containing ker(R).
By part (1) of this theorem, φ(I) is an ideal in R′. We define a map f : R/I → R′/φ(I)
by, for any x ∈ R, f : x + I 7→ φ(x) + φ(I). We first check that this is well-defined.
Suppose x, y ∈ R are such that x + I = y + I. Then ∃z ∈ I such that x = y + z. Thus,
φ(x) = φ(y) + φ(z), so since φ(z) ∈ φ(I) we get f(x + I) = f(y + I), as required. Next,
we check that this is a homomorphism. Suppose that x, y ∈ R. Then f((x + y) + I) =
φ(x + y) + φ(I) = (φ(x) + φ(y)) + φ(I) = (φ(x) + φ(I)) + (φ(y) + φ(I)) = f(x) + f(y),
and f(xy + I) = φ(xy) + φ(I) = φ(x)φ(y) + φ(I) = (φ(x) + φ(I))(φ(y) + φ(I)) = f(x)f(y),
as required. Finally, we show that this is an isomorphism. Pick any x, y ∈ R and suppose
that f(x + I) = f(y + I). Then φ(x), φ(y) differ only by an element of φ(I), and hence
φ(x − y) ∈ φ(I). Thus, by part (2) of this theorem, x − y ∈ I ⇒ x + I = y + I, making f
injective. Surjectivity follows from the surjectivity of φ.

Corollary 3.4.3.1. Suppose that I ⊂ J are both ideals in a ring R. Then

R/J ∼=
R/I

J/I

Proof. This is just the third part of the proceeding theorem applied to the surjective homo-
morphism p : R→ R/I (the projection map).
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Theorem 3.4.4 (Third Fundamental Theorem of Homomorphisms). Suppose S is a subring
and I an ideal in a ring R. Then S + I = {x+ y | x ∈ S, y ∈ I} is a subring of R containing
I, S ∩ I is an ideal of S, and

S

S ∩ I
∼=
S + I

I

Proof. The proofs of S+ I being a subring and S ∩ I an ideal of S are left to the reader (the
proof is a direct verification). For the last part, we define our map by f : s+(S ∩ I) 7→ s+ I.
That this is a homomorphism if it is well-defined is immediate, so we just check that it’s
well-defined and bijective. For well-defined, suppose that s + (S ∩ I) = s′ + (S ∩ I). Then
∃z ∈ S ∩ I, and in particular z ∈ I, such that s = s′ + z ⇒ s + I = s′ + I, as required. For
injectivity, suppose that s+ I = s′+ I. Then ∃z ∈ I such that s = s′+ z. Since s− s′ = z, it
follows that z ∈ S, so z ∈ S ∩ I and hence s+(S ∩ I) = s′ +(S ∩ I), as required. Finally, we
do surjectivity. Pick any x+ y ∈ S + I. Then (x+ y) + I = x+ I = f(x+ (S ∩ I)), making
f surjective.

It’s worth at the end here taking a moment to compare these theorems to those in section 2.4,
and noting any similarities or differences between them. In fact, there’s a sense in which the
two sets of theorems are in fact identical, which will be explored further in chapter 6.

3.5 Field of Fractions

Note. For the rest of the chapter, all rings are assumed to be commutative unless
otherwise stated.

This is following a similar section in [Jac09], although it has been re-written significantly.
The question we explore here is quite simple. Given an arbitrary domain, can we embed it
into a field? The answer turns out to be no in general, but it turns out that for commutative
rings we can always do this. The natural construction to prove this is actually much more
intuitive than one may think. Indeed, at this point you’ve probably seen a construction of
the rational numbers from the integers. This will, in fact, work for any ring.

Definition 3.5.1. The field of fractions of a ring R, denoted FF(R), is the set

{(a, b) ∈ R×R∗ | b ̸= 0}/ ∼

where ∼ is the equivalence on R × R∗ given by (a, b) ∼ (c, d) ⇐⇒ ad = bc, equipped with
binary operations

[(a, b)] + [(c, d)] = [(ad+ bc, bd)] [(a, b)] · [(c, d)] = [(ac, bd)]

Proposition 3.5.2. FF(R) is a well-defined field, with zero element [(0, 1)] and identity
[(1, 1)] which R embeds into via the map x 7→ (x, 1).

Note. We often refer to the map in the above proposition as the natural embedding of a
domain into its field of fractions (although this is technically bad form and shouldn’t be
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done). Since FF(R) is a field, we will also (suggestively) denote [(a, b)] by a/b or a
b
. In this

notation, the above operations become

a/b+ c/d =
ad+ bc

bd

a

b
· c
d
=
ac

bd

Proof. Left as an exercise to the reader (it’s good practice for working with fields of frac-
tions in calculations, but not particularly enlightening from a conceptual standpoint). The
important thing to note is that (a/b)−1 = b/a.

Of course, domains can be embedded into multiple fields. What makes the field of fractions
special is that it is, in a sense, the smallest such field. This is characterized by the following
universal property3.

Theorem 3.5.3. Suppose R is a domain embedded in some field F via φ : R ↪→ F . Then
there exists a unique ψ ∈ Hom(FF(R), F ) such that the following diagram commutes

R FF(F )

F

φ ψ

where the unlabelled arrow is he the natural embedding.

Proof. To start, suppose such a ψ ∈ Hom(FF(R), F ) existed. Then we’d require that φ(a) =
ψ(a/1). Furthermore, it would follow that

ψ(a/b) = ψ
(a
1

1

b

)
= ψ(a/1)ψ(b/1)−1 = φ(a)φ(b)−1

But this completely characterizes ψ, making it the desired unique homomorphism if it is well-
defined. So, we just need to check that it is in fact well-defined. To that end, we first note
that for b ̸= 0, φ(b) ̸= 0 (as φ is injective), and hence φ(b)−1 is well-defined. Thus, φ(a)φ(b)−1

is well-defined. To end off then, we just need to check that a/b = c/d ⇒ ψ(a/b) = ψ(c/d).
But since ad = bc, we get

φ(ad) = φ(bc)⇒ φ(a)φ(b)−1 = φ(c)φ(d)−1

as required.

In fact, Theorem 3.5.3 implies something a little stronger, that FF(R) is characterized up to
unique isomorphism4. By this, we mean the following.

Corollary 3.5.3.1. Suppose F ′ is a field, and f : R ↪→ F ′ an embedding of a domain. If,
for every field F and homomorphism φ : R→ F there exists a unique ψ ∈ Hom(F ′, F ) such
that the following diagram commutes

3These are very important, but we won’t worry too much about them at the moment. They will be
formally introduced in chapter 7.

4This is the actual universal property.
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R F ′

F

f

φ ψ

Then there exists one, and only one, isomorphism g : FF(R)→ F ′ such that φ = g ◦ ι always
holds.

Proof. If F ′ satisfies the above property, then there exist by Theorem 3.5.3 unique homo-
morphisms g, h such that the following diagrams commute

R F ′ R FF(R)

FF(R) F ′

f

g f
h

where the unlabelled arrows are the natural embedding. Combining these diagrams, we get
one larger commutative diagram

R FF(R)

F ′

f
h

g

Naming the natural inclusion ι, we see that this implies

ι = g ◦ f, h ◦ ι = f ⇒ ι = g ◦ h ◦ ι

Since ι is injective, we can conclude that (g◦h)|Im(ι) = IdIm(ι). But of course by Theorem 3.5.3
there exists a unique φ ∈ Hom(FF(R),FF(R)) such that the following diagram commutes

R FF(R)

FF(R)

ι

ι φ

Since φ = IdFF(R) works, it follows that φ = IdFF(R). But of course and φ will do as long as
φ|Im(ι) = IdIm(ι), so it follows that (g ◦ h)|Im(ι) = IdIm(ι) ⇒ g ◦ h = IdFF(R). Similarly, we also
see that

f = h ◦ g ◦ f

Since f is injective, we can conclude that (h◦ g)|Im(f) = IdIm(f). But of course by assumption
there exists a unique φ ∈ Hom(F ′, F ′) such that the following diagram commutes

R F ′

F ′

f

f φ
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Since φ = IdF ′ works, it follows that φ = IdFF(R). But of course and φ will do as long as
φ|Im(f) = IdIm(f), so it follows that (h◦g)|Im(f) = IdIm(f) ⇒ h◦g = IdF ′ . Thus, h is the desired
isomorphism. That it is unique (in the sense of the corollary statement) follows immediately
from the uniqueness of our original choice of h.

Don’t feel too worried if that proof seemed overwhelming or hard to follow, it’s our first
instance of a technique known as diagram chasing which has a habit of being hard formally
write out. Take as much time as you need to understand the above proof before moving on.

As one final note, we talked a lot about how to turn rings into fields, but what about
recognizing which rings are already fields? To do this, we have the following useful result.

Proposition 3.5.4. A ring R is a field if and only if its only two ideals are (0) = {0} and
(1) = R.

Proof. First, suppose that R is a field, and I ⊂ R an ideal. If I ̸= (0), then we can find
some non-zero x ∈ I. x is a unit, so for any other y ∈ R we get (yx−1)x = y ∈ I, and hence
I = R. Now, suppose that there exists some non-zero x ∈ R which is not a unit. Since R
is commutative, (x) = {rx | r ∈ R}. Thus, since x is not a unit, rx ̸= 1 always and hence
1 /∈ (x), so (x) ̸= (1). Since x ̸= 0, (x) ̸= (0).

3.6 Factorial Monoids

Most of the remaining (required) sections of this chapter are all on polynomial rings. Our
main concern for polynomial rings, in general, is similar to that of polynomial functions.
Namely, we wish to find roots of the polynomials. However, there is an issue with this.
Namely, when we view polynomials as rings instead of functions, evaluation becomes a bit of
a trickier topic5. As such, we wish to find roots without considering evaluation, which leads
naturally to the idea of factoring polynomials. To that end, we will take a step back now to
understand factoring in a more general context, following a similar section in [Jac09].

For this section, we will work exclusively with commutative monoids M satisfying the can-
cellation law, that is in the monoid xy = xz ⇒ y = z.

Definition 3.6.1. For a, b ∈ M , we say that a | b (a divides b or is a factor of b) if there
exists some z ∈ M such that b = za. a is a proper factor of b if a | b but b ∤ a. An element
b ∈ M is irreducible if its only proper factors are units, and is prime if b | cd implies that
b | c or b | d, for any c, d ∈M .

Note. If a | b and b | a, then one can use the cancellation law to show that a = zb, where
z ∈ M is a unit. Also, prime elements are necessarily irreducible. Indeed, suppose that
p ∈M is prime and a | p, with ab = p. Then p | a or p | b. In the first case we’ve shown that
a is not a proper factor, and we’re done. In the second, cancellation law implies that a is a
unit, and hence we’re done. Note, however, that irreducible elements need not be prime in
general.

5It can be done without too much difficulty, but you have to be careful.
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Definition 3.6.2. A factorization of an element a ∈ M is an expression of the form a =
p1 · · · pn, where pk ∈ M are irreducible. Such a factorization is called unique if any other
factorization can be obtained from the original one by re-ordering elements and multiplying
by units.

This finally allows us to define our desired objects.

Definition 3.6.3. M is factorial if every element of M has a unique factorization.

The classic example of one of these is Z∗ under multiplication. We’ll now spend the rest of
this section defining some equivalent conditions for monoids to be factorial. The first two
conditions we’ll explore are the following.

Definition 3.6.4. A monoid M is said to satisfy

1. The ascending chain condition (ACC) if there exists no infinite sequence of elements
ai ∈M such that ai+1 is a proper factor of ai.

2. The primeness condition if every irreducible element of M is prime.

Theorem 3.6.5. A monoid M is factorial if and only if it satisfies the ACC and primeness
conditions.

Proof. First, suppose that M is factorial. Suppose that x, y, z ∈ M are such that x is
irreducible and x | yz. Let w ∈ M be the element such that xw = yz. By the uniqueness of
irreducible decompositions, and since x is an irreducible element, we conclude that x (up to
multiplication by some unit) must be in the irreducible decomposition of y or z, and hence
x | y or x | z. x is therefore prime, and M satisfies the primeness condition. Now, suppose
{ai}i∈N is a sequence of elements inM violating the ACC. Take an irreducible decomposition
of a1, say a1 = p1 · · · pn, and one of a2, say a2 = q1 · · · qm, where we assume that pj, qj are
not units (if they were then a2 would not be a proper factor of a1). Let z ∈M be such that
a2z = a1. Then by the uniqueness of irreducible decompositions and primeness condition,
q1 | p1 or q1 | p2 · · · pn. If q1 | p1, then it is just a unit multiple of p1 as p1 is irreducible.
Otherwise, we can repeat this argument on p2 · · · pn and thereon, finding some 1 ≤ j ≤ n
such that q1 = upj, where u ∈ M is a unit. We may then apply cancellation law to remove
the factor q1 from both sides, and repeat the argument with q2, eventually concluding that
for each qj we can find some pkj and unit uj ∈M such that qj = ujpkj and each kj is distinct.
Since the number of irreducible factors in the decomposition of an element in a factorial
monoid is unique, we may conclude (cancelling the qj on both sides) that since a2 is a proper
factor of a1, it must have strictly fewer irreducible factors in its decomposition compared
to a1. We may then repeat this argument with a2, a3 and so on, eventually finding some
r ∈ N such that ar is irreducible. But then ar cannot have any proper factors, violating our
assumption about the nature of {ai}i∈N. Therefore, M satisfies the ACC.

Now, suppose that M satisfies the ACC and primeness conditions. We first show that any
x ∈M has an irreducible decomposition. If x is irreducible than this is immediate. Otherwise,
pick some non-unit irreducible factor a1 ∈M and element b1 ∈M such that x = a1b1. Then
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b1 is a proper factor of x. Indeed, suppose that x | b1. Let y ∈M be such that xy = b1. Then
a1b1y = b1 ⇒ a1y = 1 and hence a1 is a unit contrary to our assumption. If b1 is irreducible,
then a1b1 is an irreducible decomposition, and we’re done. Otherwise, we repeat the above
process on b1, and continue until all factors are irreducible. This process must terminate,
as otherwise the bi sequence constructed along the way would violate the ACC. Thus, every
element of M has an irreducible decomposition. We finish by proving the uniqueness of
these decompositions. Suppose x = p1 · · · pn = q1 · · · qm are two irreducible decompositions.
Since p1 | q1 · · · qm, we conclude by the primeness condition that p1 | q1 or p1 | q2 · · · qm. We
continue this process, repeating the same argument as in the previous part of the proof, to
pair up each pi with a distinct qj it is a unit multiple of. Cancelling all the pi must then leave
us with only units, giving the uniqueness of the decomposition and making M a factorial
domain.

There’s one more idea we’d like to generalize before we move on, namely the concept of
greatest common divisors and least common multiples.

Definition 3.6.6. For any two elements x, y ∈M , we call z ∈M

1. A least common multiple (LCM) of x, y (or an element of lcm(x, y)) if x, y | z and, for
any w ∈M , x, y | w ⇒ z | w.

2. A greatest common divisor (GCD) of x, y (or an element of gcd(x, y)) if z | x, y and,
for any w ∈M , w | x, y ⇒ w | z.

Note. One can check that, in Z, these are equivalent to our traditional notions of LCM and
GCD. Furthermore, LCM and GCD of a pair of elements are unique up to units.

Theorem 3.6.7. Any pair of elements x, y in a factorial monoid M have a GCD and LCM.

Proof. (Sketch) First, suppose that x is a unit. Then any element of M dividing x is also
a unit, x | y, and one can quickly check that x ∈ gcd(x, y), y ∈ lcm(x, y). Now, suppose
that x, y are not units. Let x = p1 · · · pn, y = q1 · · · qm be their irreducible decompositions,
where we assume that the irreducible factors are not units. Then by a similar argument as in
Theorem 3.6.5, any element of M dividing x, y must have as irreducible factors only factors
appearing in x, y (up to multiplication by units), and none of these factors can appear more
times than they did in x, y. It follows that taking the product of all common irreducible
factors of x, y (counting multiplicity and considering factors up to multiplication by units)
gives a GCD of x, y. A similar argument shows that taking the product of the minimum
number of irreducible factors needed to have all those in x, y gives an LCM.

Note. This result and the GCD/LCM constructed are just extensions of the same result
section 1.1.

It turns out that the GCD and factoriality of a monoid are closely related. This is related to
the following two results, both of which are proven in [Jac09] and will not be proven here.

Proposition 3.6.8. 1. If any pair of elements in a monoid M have a GCD (this is re-
ferred to as the GCD condition), then so does any finite collection of elements in M .
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2. The GCD condition implies the primeness condition.

Corollary 3.6.8.1. M is factorial if and only if it satisfies the ACC and GCD conditions.

Proof. If M is factorial, then it satisfies ACC by Theorem 3.6.5 and GCD by Theorem 3.6.7.
If M satisfies ACC and GCD, then by proposition 3.6.8 it satisfies the primeness condition,
and hence by Theorem 3.6.5 is factorial.

3.7 PIDs and Euclidean Domains

This is again following a similar section in [Jac09]. We start with a basic observation.

Proposition 3.7.1. Let R be a domain. Then for any x, y ∈ R, x | y if and only if (y) ⊂ (x).

Proof. If x | y, then there exists some z ∈ R such that xz = y, and hence y ∈ (x)⇒ (y) ⊂ (x).
If (y) ⊂ (x), then y ∈ (x), so there exists some z ∈ R such that xz = y. Therefore, x | y.

Note. By x | y, we mean here that x | y in the commutative monomial (R, ·), which since R
is a domain satisfies the cancellation law.

Essentially, the above proposition says that we may study ideals generated by one element
(these are called principle ideals) instead of studying divisibility directly. Ideally, then, we’d
like all the ideals in R to be principle, and we call R a principle ideal domain (PID) if it
satisfies this. Specifically, we’d like to find rings such that (R, ·) is factorial. We call such
rings unique factorization domains (UFDs).

Theorem 3.7.2. If R is a PID, then R is a UFD.

Proof. First, we show that R satisfies the ACC. Suppose

(a1) ⊂ (a2) ⊂ · · · ⊂ (an) ⊂ · · ·

is a chain of principle ideals in R. Then A =
⋃
i∈N(ai) is an ideal, and hence since R is a

PID there exists some x ∈ R such that A = (x). Thus, x ∈ (an) for some n ∈ N, but also by
definition (an) ⊂ (x). We conclude that (an) = (x), so an, x differ only by a unit. The ACC
follows from this and proposition 3.7.1. Next, we show that R satisfies the GCD condition.
In particular, pick any x, y ∈ R. Then since R is a PID, there exists some z ∈ R such that
(x, y) = (z). Since (x), (y) ⊂ (z), z | x, y. Now, suppose that w ∈ R is some other element
such that w | x, y. Then (x), (y) ⊂ (w), so since ideals are closed under addition we conclude
that (x, y) ⊂ (w)⇒ (z) ⊂ (w)⇒ w | z. Thus, z is the desired GCD. The result now follows
by corollary 3.5.3.1.

Actually proving that rings are PIDs can be somewhat tricky, but (as we’ll see later in this
section) having a long division algorithm in R like that of Z is sufficient to make a ring a
PID. Thus, we generalize long division.

Definition 3.7.3. A domain R is Euclidean if there exists a map δ : R → Z∗ such that for
any a, b ∈ R∗, there exists some q, r ∈ R such that a = bq + r, where δ(r) < δ(b).
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Note. δ is our way of measuring the ”size” of our remainder r. In the case of Z, we’d have
δ(x) = |x|.

Theorem 3.7.4. Euclidean domains are PIDs.

Proof. Suppose R is Euclidean. Let I be any ideal in R, and suppose that I ̸= (0). Let b ∈ I
be a non-zero element in I such that δ(b) is minimal. Suppose ∃a ∈ I such that b ∤ a. Since
R is Euclidean, there exist q, r ∈ R such that a = qb+ r, and δ(r) < δ(b). But b ∤ a⇒ r ̸= 0,
and a− qb ∈ I ⇒ r ∈ I, so this contradicts the minimality of δ(b). Thus, every element of I
is a multiple of b, so I = (b).

Corollary 3.7.4.1. Euclidean domains are UFDs.

3.8 Polynomial Rings

We follow the results of [Jac09] here again, although the organization of the material has
been significantly changed.

Polynomial rings are, without a doubt, the most important example of rings for algebra. In a
way, the entirety of Part IV is dedicated to the study of polynomial rings and their structure.
So without further ado, let’s get to it.

Definition 3.8.1. Let R be a ring. The polynomial ring over R in one variable, denoted

R[x], is the set R
Z≥0
c (infinite sequences in R with finitely many non-zero elements), with

element-wise addition and multiplication defined by

((ai)i∈Z≥0
(bi)i∈Z≥0

)j =
∑
i+k=j

aibk

Note. Our zero here is (0, 0, 0, . . . ), and our identity is (1, 0, 0, . . . ).

It’s not immediate from this definition the connection between this ring and polynomials as
we know them. To make this connection more clear, we usually adopt the following notation.
First, denote the sequence with a 1 in the nth position by xn−1 for n ≥ 1. One can note that

(c, 0, 0, . . . ) · (a0, a1, . . . ) = (ca0, ca1, . . . )

Thus, any sequence can be written uniquely6 in the following form

(a0, a1, . . . ) = (a0, 0, . . . ) + (a1, 0, . . . )x+ (a2, 0, . . . )x
2 + · · ·

Denoting (c, 0, . . . ) by just c, this becomes

(a0, a1, . . . ) = a0 + a1x+ a2x
2 + · · ·

making the connection much more clear. In fact, we will always choose to use this notation, as
it makes everything much more intuitive. One can check that multiplying out two expressions
of the above form in the way that you normally would for polynomials will give the correct
result, only furthering this connection.

6This technically needs to be proven, but I don’t think the proof is particularly enlightening or complicated.
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Note. This polynomial ring is actually distinct from the ring of polynomial functions over R,
which we’ll cover a bit later in this section.

We can then continue to generalize this to multivariable polynomial rings.

Definition 3.8.2. We define the multivariable polynomial ring over R in the following induc-
tive manner. That is, we denote the polynomial ring in n variables over R by R[x1, . . . , xn],
and define it by R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].

It’s at this point where the notation we’ve been using, writing polynomial rings in the same
way as polynomial functions, becomes incredibly convenient. For example, we’d get that in
R[x1, x2]

((a, b, c, 0, . . . ), (a, b, 0, . . . ), (a, 0, . . . ), (0, . . . ), . . . ) = (a+ bx1 + cx21) + (a+ bx1)x2 + ax22
= a+ bx1 + cx21 + ax2 + bx1x2 + ax22

We call terms of the form xk11 · · ·xknn monomials in R[x1, . . . , xn]. Like in R[x], any element
of R[x1, . . . , xn] can be written uniquely as the sum of finitely many monomial elements
summed together, with each monomial multiplied by some non-zero coefficient in R[Jac09]7.

We move away from polynomials now, for a moment, and talk instead about the related
concept of adjoined rings.

Definition 3.8.3. Let R be a subring of a ring S, and let U ⊂ S. Then R adjoin U , denoted
R[U ], is the subring of S generated by R ∪ U .

Proposition 3.8.4. Suppose R is a subring of S, and U, V ⊂ S. Then R[U ][V ] = R[U ∪V ].

Proof. Since R[U ∪V ] is a subring of S containing R and U , R[U ] ⊂ R[U ∪V ]. Thus, R[U ], V
are contained in R[U ∪V ], so R[U ][V ] ⊂ R[U ∪V ]. Furthermore, R[U ][V ] contains R,U , and
V , so R[U ∪ V ] ⊂ R[U ][V ].

Proposition 3.8.5. Suppose R is a subring of S, and u ∈ S. Then R[u] = R[{u}] is the
subring of S composed of expressions of the form∑

k

aku
k, ak ∈ R, finite sums

Proof. That all expressions of this form are in R[u] is immediate. Thus, since (as can be
quickly checked) since this is a subring containing R and u, we get the desired result.

Note. The above result suggests a strong connection between R[x] and R[u], the latter is a
way of evaluating the polynomial expressions in the former. This is also why we take the
blatant abuse of notation of denoting them in the same way.

Note. The above proposition in fact works for any R[U ], extending the expressions in the
obvious way. The proof is identical.

7The proof of this is an inductive argument, and rather tedious.
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The above observation will now be expanded upon in the following extremely important
theorem. For this theorem, we take the convention of the ”constants” in our standard notation
for R[x1, . . . , xn] being an embedding of R in R[x1, . . . , xn].

Theorem 3.8.6. Let R be a ring, and S any ring containing R. Then for any n ∈ N and
u1, . . . , un ∈ S, there exists a unique homomorphism φ : R[x1, . . . , xn] → S fixing R and
taking xi 7→ ui.

Proof. Since R[x1, . . . , xn] = R[x1, . . . , xn−1][xn], it suffices by induction to prove this for the
case n = 1. Note that any a ∈ R[x] can be written uniquely in the form

a =
∑
k≥0

akx
k

where ak ∈ R and only finitely many ak ̸= 0. We’ll define φ : R[x]→ S by

φ(a) =
∑
k≥0

aku
k

It is fairly simple to check that this is in fact a ring homomorphism. For uniqueness, note
that if φ|R = IdR and φ(x) = u, then since φ is a ring homomorphism

φ(a) = φ(a) =
∑
k≥0

φ(ak)φ(x)
k =

∑
k≥0

aku
k

Note. What we mean by ”R is a subring of S” can often be a bit loose. We make no distinction
between R being a subring of S, or R embedding into S via a ring homomorphism. Indeed,
identifying R with its embedding, we can see that there really is no difference between the
two situations.

Corollary 3.8.6.1. Fix n ∈ N. Suppose K is any ring containing R and distinguished
elements y1, . . . , yn ∈ K such that

1. R[y1, . . . , yn] = K

2. For any other ring S containing R and u1, . . . , un ∈ S there exists a unique homomor-
phism φ : K → S which fixes R and satisfies φ(yi) = ui.

Then K ∼= R[x1, . . . , xn].

Proof. By assumption, there exists a unique φ ∈ Hom(K,R[x1, . . . , xn]) fixing R such that
φ(yi) = xi. Furthermore, there exists by Theorem 3.8.6 a unique ψ ∈ Hom(R[x1, . . . , xn], K)
fixing R such that ψ(xi) = yi. Then (φ ◦ψ)(xi) = xi and φ ◦ψ fixes R, so by the uniqueness
property in Theorem 3.8.6 φ◦ψ = IdR[x1,...,xn]. An identical argument shows that ψ◦φ = IdK ,
so φ is an isomorphism.
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Note. What the above argument is really saying is that, up to isomorphism, there’s only one
way to define a multivariable polynomial ring over R.

Corollary 3.8.6.2. For any permutation σ ∈ Sn, there exists a unique automorphism φσ ∈
Isom(R[x1, . . . , xn]) such that φ(xi) = xσ(i).

Proof. Left to the reader. This has essentially the same proof as corollary 3.8.6.1.

We call the homomorphism given by Theorem 3.8.6 the evaluation homomorphism. Our main
goal from now on will be to understand the kernels of these homomorphisms. Indeed, we have
a good understanding of the structure of R[x], and R[u] ∼= R[x]/ kerφ, so understanding the
kernel of evaluation homomorphisms teaches us a lot about the element of rings containing R.
It will also, unsurprisingly, have deep connections to identification of roots of polynomials.
On that note, let’s actually define these polynomial functions.

Definition 3.8.7. The ring of polynomial functions in n variables over R, denoted Pn(R),
is the subset of the ring of functions from Rn → R of the form

f(u1, . . . , un) =
∑

(k1,...,kn)

ak1,...,knu
k1
1 · · ·uknn

where ak1,...,kn ∈ R and the above sum is finite.

In order to understand the connections between these, our polynomial rings, and roots of
polynomials, we’ll need to study the factoring of polynomials.

3.9 Factoring Polynomials

Again, this follows some similar sections in [Jac09]. In order to begin factoring, we first need
to understand the notion of degree.

Definition 3.9.1. Let f ∈ R[x] be a polynomial. Then we may write, for some n ∈ N and
an ̸= 0

f =
n∑
k=0

akx
k

We define the degree of f , denoted deg(f), to be n, and call an the leading coefficient of
f . By convention, we define that deg(0) = −∞, where −∞ has the expected arithmetic
properties.

Note. This is well-defined by the uniqueness of this method of expressing f . For multivariable
polynomials, the notion of degree gets a little tricker. One can either look at their degree in
a particular variable, or their total degree. We’ll look at that a bit more in the next section.

A couple of the properties of degree are fairly immediate, and will not be proven here.

Proposition 3.9.2. Suppose f, g ∈ R[x]. Then
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1. deg(f + g) ≤ max(deg(f), deg(g))

2. deg(fg) = deg(f) deg(g)

Using the notion of degree, we can immediately start proving some useful results.

Proposition 3.9.3. If R is a domain, then R[x1, . . . , xn] is a domain.

Proof. Since R[x1, . . . , xn−1][xn] = R[x1, . . . , xn], it suffices to show that R[x] is a domain.
Indeed, suppose that f, g ∈ R[x]∗. Then deg(f), deg(g) ≥ 0, so deg(fg) ≥ 0⇒ fg ̸= 0.

The next result is perhaps one of the most fundamental in this section, namely that polyno-
mial long division can be extended to arbitrary polynomial rings.

Theorem 3.9.4. Suppose f, g ∈ R[x], with g ̸= 0. Let m = deg(g) and bm ̸= 0 be the leading
coefficient of g. Then there exists some k ∈ N, q, r ∈ R[x] with deg(r) < deg(g) such that

bkmf = qg + r

Proof. If deg(f) < deg(g), then we simply take q = 0, r = bmf, k = 1 to get the desired
result. Otherwise, define

f1 = bmf − anxn−mg

where n = deg(f), and an is the leading coefficient of f . It’s clear that deg(f1) ≤ deg(f)− 1.
If deg(f1) < deg(g), then we’re done. Otherwise, we can repeat this process with f1, getting
an f2, . . . , fℓ ∈ R[x], continuing until deg(fℓ) < deg(g). This is guaranteed to terminate,
since deg f[k + 1) ≤ deg(fk)− 1. In the end, we get

fℓ = bmfℓ − a(ℓ−1)xdeg(fℓ−1−m)g

where a(k) is the leading coefficient of fk. But in turn we know that

fℓ−1 = bmfℓ−2 − a(ℓ−2)xdeg(fℓ−2−m)g

and so on. Expanding out, this gives

fℓ = b2mfℓ−2 − (a(ℓ−1)xdeg(fℓ−1−m) + a(ℓ−2)xdeg(fℓ−2−m))g

Continuing this process, and calling the collected terms which multiply g by q ∈ R[x], we see
that

fℓ = bℓmf − qg ⇒ bℓmf = qg + fℓ

Since deg(fℓ) < deg(g), this completes the proof.

Note. This proof also gives you an algorithm for calculating this ”long division”.

If bm is a unit, then since bkm ̸= 0 we get the following, more familiar result.
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Corollary 3.9.4.1. If f, g ∈ R[x], and g ̸= 0, then there exists unique q, r ∈ R[x] with
deg(r) < deg(g) such that

f = qg + r

Furthermore, in FF(R[x]), we get
f

g
= q +

r

g

Proof. Existence is given by Theorem 3.9.4 and dividing out by the unit. FOr uniqueness,
suppose q1, r1 and q2, r2 were two such pairs. Then

q1g + r1 = q2g + r2 ⇒ (q1 − q2)g = r2 − r1

Taking the degree of both sides, we get

deg(q1 − q2) deg(g) ≤ max(deg(r2), deg(r1)) < deg(g)

We are therefore left with two possibilities. First, suppose that deg(g) = 0. Then deg(r1),
deg(r2) < 0 ⇒ r1 = r2 = 0, so (q1 − q2)g = 0 ⇒ q1 = q2. Otherwise, we must conclude that
q1 = q2, which in turn implies that r1 = r2.

Note. In this case, we call q and r the quotient and remainder of f/g.

Using this, we can start factoring our polynomials properly. In order to do so, we’ll need
a bit of notation. Suppose R ⊂ S is a subring, f ∈ R[x], and a ∈ S. Then we’ll use f(x)
to denote the polynomial in R[x], and f(a) to denote the evaluation (i.e. image under the
evaluation homomorphism) of f at a.

Corollary 3.9.4.2 (Remainder Theorem). Suppose f(x) ∈ R[x] and a ∈ R. Then there
exists a unique q(x) ∈ R[x] such that

f(x) = (x− a)q(x) + f(a)

Proof. By corollary 3.9.4.1, there exist some unique q(x), r(x) ∈ R[x] such that deg(r(x)) <
deg(x− a) and

f(x) = (x− a)q(x) + r(x)

In particular, since deg(r(x)) < deg(x − a) = 1, r(x) ∈ R (or more properly its embedding
into R[x]). Thus, r(x) is fixed by any evaluation homomorphism. In particular, we can then
evaluate both sides of the above equation at a to get

f(a) = (a− a)q(a) + r(x)⇒ r(x) = f(a)

We also get the following result immediately from the above corollary.

Corollary 3.9.4.3 (Factor Theorem). Suppose f(x) ∈ R[x] and a ∈ R. Then (x− a) | f(x)
if and only if f(a) = 0.
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There are two more results we can get out of these theorems, namely on the number of roots
polynomials over fields have and on the structure of polynomial rings over a field.

Definition 3.9.5. Let F be a field, f(x) ∈ F [x] be such that deg(f) > 0. We call a ∈ F a
root of f if f(a) = 0.

Corollary 3.9.5.1. Let f(x) ∈ F [x] be a polynomial of degree n ≥ 1. Then f(x) has at most
n distinct roots in F .

Proof. Let a1, . . . , am ∈ F be distinct roots of F . We show, by induction on r, that
∏r

k=1(x−
ar) | f(x), from which the result immediately follows. The case of r = 1 is given by the factor
theorem. Now, suppose this holds for some r ≥ 1 such that r < m. Then there exists some
g(x) ∈ F [x] such that

g(x)
r∏

k=1

(x− ak) = f(x)

evaluating both sides at ar+1, we get that since f(ar+1) = 0 and (ar+1 − ak) ̸= 0 for 1 ≤
k ≤ r, g(ar+1) = 0. Thus, by the factor theorem, there exists some h(x) ∈ F [x] such that
g(x) = (x− ar+1)h(x), and so

h(x)
r+1∏
k=1

(x− ak) = f(x)⇒
r+1∏
k=1

(x− ak) | f(x)

Corollary 3.9.5.2. If F is a field, then F [x] is a PID.

Proof. Let I ⊂ F [x] be an ideal. Let f(x) ∈ I be a non-zero polynomial of minimal degree.
Take any other polynomial g(x) ∈ F [x]. By corollary 3.9.4.1, there exist q(x), r(x) ∈ F [x]
such that deg(r) < deg(f) and

g(x) = q(x)f(x) + r(x)⇒ r(x) = g(x)− q(x)f(x)

Since r(x) ∈ I, we conclude by the minimality of the degree of f(x) that r(x) = 0. Thus,
f(x) | g(x). Since every element of I is divisible by f(x), and f(x) ∈ I, it follows that
I = (f).

Note. This result is false for multivariable polynomial rings, a decent example of this can be
found in [Jac09].

There’s a strong connection between evaluation homomorphisms and the irreducibility of
polynomials we’re building up to here, but first we’ll need the following definitions.

Definition 3.9.6. Let R ⊂ S be a subring, and pick a ∈ S. We call a algebraic over R
if there exists a monic (i.e. polynomial with leading coefficient 1) f(x) ∈ R[x] such that
f(a) = 0. Otherwise, we call it transcendental over R. For algebraic elements, we call a
monic polynomial f(x) ∈ R[x] such that f(a) = 0 a minimal polynomial of a over R.
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Proposition 3.9.7. Let F ⊂ K be a subfield, and pick any a ∈ K algebraic over F . Then
a has a unique minimal polynomial.

Proof. Note that the set of all polynomials of which a is a root is an ideal I. By corollary
3.9.5.2, F [x] is a PID. Thus, there exists some non-zero f(x) ∈ F [x] such that I = (f(x)).
In particular, since we’re operating over a field, we can choose for f(x) to be monic. Since
any polynomial in I is a multiple of f(x), there is no other monic polynomial in I of degree
less than or equal to f(x).

In this case, we take to calling f(x) the minimal polynomial of a over F .

Theorem 3.9.8. Suppose F ⊂ K is a subfield, and u ∈ K is algebraic over F with minimal
polynomial f(x) ∈ F [x]. Then F [u] is a field if f(x) is irreducible, and is not a domain
otherwise.

Proof. First, suppose that f(x) is irreducible. Let φ ∈ Hom(F [x], K) be the evaluation
homomorphism. We can first note that F [u] ∼= φ(F [x]), and hence

F [u] ∼= F [x]/ ker(φ)

Every ideal in F [u] is therefore the image of an ideal in F [x] containing ker(φ) under the
quotient map. By the proof of proposition 3.9.7, ker(φ) = (f(x)). Therefore, ideals in
F [u] correspond to ideals in F [x] containing f(x). Suppose J were such an ideal. Then
since F [x] is a PID and F a field, there exists a monic g(x) ∈ F [x] such that J = (g(x)).
Thus, since f(x) ∈ (g(x)), g(x) | f(x). But this implies that g(x) is a unit, and hence
g(x) ∈ F ⇒ g(x) = 1. Thus, the only two ideals in F [u] are the zero ideal and F [u], making
F [u] a field. Now, suppose that f(x) is reducible, say with factoring f(x) = g(x)h(x),
where deg(g), deg(h) ≥ 1. By the minimality of the degree of f , g(u), h(u) ̸= 0. However,
f(u) = g(u)h(u) = 0. Thus, F [u] is not a domain.

You may think we’re done with factoring, but you’d be wrong. We can, in fact, build up to
one last much stronger result. Namely, that if R is a UFD, then so is R[x]. To do this, we’ll
need to introduce the concept of the content of a polynomial.

Definition 3.9.9. Let R be a UFD, and f(x) ∈ R[x]∗. Writing

f(x) = anx
n + · · ·+ a1x+ a0

We define the content of f , denoted c(f), by

c(f) = GCD(a1, . . . , an)

If c(f) is a unit, we call f primitive.

Note. The content is only-well defined up to multiplication by units.

In the following, we will need an identity on GCDs which we will not prove. A proof can be
found in [Jac09].
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Proposition 3.9.10. Suppose M is a factorial monoid, and a, b, c ∈ M . Then up to multi-
plication by units

1. GCD(GCD(a, b), c) = GCD(a, b, c)

2. GCD(ac, bc) = cGCD(a, b)

Note. The first part of this proposition is a little vague, but essentially means that this
equality works (up to multiplication by units in M) for any choice of GCD at any point in
evaluating the equations.

Using this, we get the following.

Proposition 3.9.11. Suppose R is a UFD, and f(x) ∈ R[x]∗. Then there exists a primitive
polynomial g(x) ∈ R[x]∗ and constant a ∈ R such that f(x) = ag(x). Furthermore, if
f(x) = bh(x) is another such decomposition, then there exists a unit u ∈ R such that b = ua.

Proof. Take some a ∈ c(f) (i.e. choose a particular content). Let f(x) = cnx
n+· · ·+c0. Then

by definition, a | ck for each 0 ≤ k ≤ n, and setting dk = ck/a and g(x) = dnx
n+· · ·+d0 we get

by proposition 3.9.10 that c(g) is a unit, and hence g is primitive. f(x) = ag(x) is therefore
the desired decomposition. Now, suppose that f(x) = bh(x) is another such decomposition.
Write h(x) = knx

n + ·+ k0. Since h is primitive, we get that since c(f) = c(ag(x)), b ∈ c(f).
Thus, there exists u ∈ R such that b = ua.

We next generalize the content of polynomials to polynomials over fields in the following
manner.

Lemma 3.9.12. Suppose R is a UFD, F = FF(R), and f(x) ∈ F [x]∗. Then there exists
some a ∈ F and primitive polynomial g(x) ∈ R[x]∗ such that f(x) = ag(x). Furthermore, if
f(x) = bh(x) is another such decomposition, then there exists a unit u ∈ R such that a = bu.

Proof. Let f(x) = cnx
n + · · · + c0. Since F = FF(R), there exists some α ∈ R∗ such that

αck ∈ R for every 0 ≤ k ≤ n. Then αf(x) ∈ R[x]∗, and hence by proposition 3.9.11
there exists some a ∈ R (in particular a ∈ c(αf(x))) and primitive g(x) ∈ R[x]∗ such that
αf(x) = ag(x). Thus, f(x) = a

α
g(x) is the desired decomposition. Now, suppose that

ag(x), bh(x) are two such decompositions. Then (αa)g(x) = (αb)h(x) are in R[x]∗, so by
proposition 3.9.11 there exists some unit u ∈ R such that αa = uαb⇒ a = ub.

In the case of the above lemma, we call the a the field content of f(x).

Lemma 3.9.13 (Gauss’s Lemma). The product of primitive polynomials is primitive.

Proof. Suppose g(x), h(x) are primitive, but f(x) = g(x)h(x) is not. Then there exists an
irreducible, and hence prime, p ∈ R∗ such that p ∤ g(x), h(x), but p | f(x). Note that
since p is prime, R′ = R/(p) is a domain8. Projecting all out polynomials into R′[x], we get
g(x), h(x) ̸= 0 but f(x) = 0. Thus, R′[x] is not a domain, which contradicts proposition
3.9.3.

8We technically have not proven this yet, but it is not too hard to check
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We can now, finally, start proving the relevant results.

Theorem 3.9.14. If f(x) ∈ R[x] has degree at least one, where R is a UFD and F = FF(D),
then f(x) is irreducible in R[x] if and only if it is irreducible in F [x].

Proof. If f(x) is irreducible in F [x], then irreducibility in R[x] is immediate. Now, suppose
that f(x) is irreducible in R[x], and is of degree at least one. By lemma 3.9.12, there
exists some a ∈ F and primitive g(x) ∈ R[x] such that f(x) = ag(x). Suppose f were
reducible in F [x], say f(x) = h(x)k(x). We note that since all non-zero constants in F are
invertible, deg(h), deg(k) ≥ 1. By lemma 3.9.12, there exist some b, c ∈ F and primitive
f1(x), f2(x) ∈ R[x] such that h(x) = bf1(x), k(x) = cf2(x). By Gauss’s lemma, f1(x)f2(x)
is primitive, so since f(x) = (bc)(f1(x)f2(x)) we conclude that there exists some unit u ∈ R
such that uf1(x)f2(x) = f(x). But then f(x) would be reducible in R[x], contradicting our
assumption.

Theorem 3.9.15. If R is a UFD, then so is R[x].

Proof. Suppose f(x) ∈ R[x]∗ is irreducible. Then it is irreducible in F [x]∗. Since F [x] is a
PID, it is a UFD. Thus, f(x) is prime in F [x], and hence prime in R[x]. This shows that
the primeness condition is satisfied. Now, suppose that f(x), g(x) ∈ R[x]∗ are such that f
is a proper factor of g. Then either deg(f) < deg(g), or there exists some non-unit u ∈ R
such that g(x) = uf(x). Since R is a UFD, it satisfies the ACC, so there can exist no infinite
chain of proper factors of u violating the ACC and hence no infinite chain of proper factors
of g(x) violating the ACC such that any degree less than or equal to g(x) has infinitely
many polynomials of that degree in the chain. Thus, R[x]∗ satisfies the ACC, making R[x] a
UFD.

Corollary 3.9.15.1. If R is a UFD, then so is R[x1, . . . , xn].

Proof. Follows by induction on n.

Note. Since multivariable polynomial rings over fields are not PIDs, as we saw earlier in this
section, this shows that UFDs need not be PIDs.

3.10 Some Consequences of Factoring

This section, again, follows [Jac09]. We look at two interesting results which follow from our
discoveries about polynomial factoring in the previous section. The first is a characterization
of when polynomial rings and polynomial rings of functions are the same.

Theorem 3.10.1. Let F be a field. Then Pn(F ) ∼= F [x1, . . . , xn] if and only if F is infinite.

Proof. If F is finite, then |Pn(F )| ≤ (n|F |)|F | and |F [x1, . . . , xn]| = ∞, so F [x1, . . . , xn] ≇
Pn(F )|. Now, suppose that F is infinite. There is an obvious homomorphism φ : F [x1, . . . , xn]
→ Pn(F ) given by φ(f)(a1, . . . , an) = f(a1, . . . , an). We wish to show that this is an iso-
morphism. That it is surjective is clear, so we just need to check injectivity. For this, it
suffices to show that any non-zero f(x1, . . . , xn) ∈ F [x1, . . . , xn] has some a1, . . . , an ∈ F

60



CHAPTER 3. RINGS 3.10. SOME CONSEQUENCES OF FACTORING

such that f(a1, . . . , an) ̸= 0. We proceed by induction on n. First, suppose that n = 1. Then
if f(a) = 0, a is a root of f . f can have at most deg(f) < ∞ roots, so since |F | = ∞ there
exists some a ∈ F such that f(a) ̸= 0, as required. Now, suppose that the result holds for
some n ≥ 1, and f ∈ F [x1, . . . , xn+1]. Then we may write that

f(x1, . . . , xn+1) =
r∑

k=0

fk(x1, . . . , xn)x
k
n+1

where fk ∈ F [x1, . . . , xn], and we may assume without loss of generality that fr ̸= 0. By
the inductive hypothesis, there exist a1, . . . , an ∈ F such that fr(a1, . . . , an) ̸= 0, and hence
f(a1, . . . , an, xn+1) ∈ F [xn+1] is non-zero. By the case n = 1, there is therefore some an+1 ∈ F
such that f(a1, . . . , an+1) ̸= 0, as required.

The second concerns the structure of finite subgroups of fields, and becomes quite important
in Galois theory.

Theorem 3.10.2. Any finite subgroup of the multiplicative group F ∗ is cyclic.

Proof. Let G ⊂ F ∗ be a finite subgroup of the multiplicative group F ∗, and let n = exp(G).
Then every element of G must be a root of the polynomial xn − 1 ∈ F [x]. But xn − 1 can
have at most n roots, so there are exactly n elements in G, making it cyclic.

We can then combine these results to get the following.

Theorem 3.10.3. Let F be a finite field such that |F | = q. Then Pn(F ) ∼= F [x1, . . . , xn]/I,
where I = (xq1 − x1, . . . , xqn − xn).
Proof. Let φ : F [x1, . . . , xn]→ Pn(F ) be the homomorphism from Theorem 3.10.1. It suffices
to show that I = ker(φ). Since F is finite, F ∗ is a cyclic group under multiplication. Thus,
aq = a for any a ∈ F , so certainly xqk − xk are in I. To show that I is generated by the
desired polynomials, there are two steps.

First, we show that any f ∈ F [x1, . . . , xn] of degree strictly less than q in every xk is not in I.
For this, we proceed by induction on n in an identical manner to Theorem 3.10.1. The case
n = 1 is clear, since a polynomial of degree < q cannot have q roots. The result therefore
follows by induction.

Second, we show that any f ∈ F [x1, . . . , xn] can be written in the form

f(x1, . . . , xn) =
n∑
k=1

fk(x1, . . . , xn)(x
q
k − xk) + f0(x1, . . . , xn)

where fk ∈ F [x1, . . . , xn] and f0 is of degree < q in every variable. This implies the desired
result, as then f0 ∈ I if and only if f0 = 0. It suffices to consider the case of f being a
monomial. Consider any monomial of the form xj11 · · · xjnn . Then for each 1 ≤ k ≤ n, there
exist qk, rk ∈ F [xk] such that xjkk = qk(xk)(x

q
k − xk) + rk(xk), where deg(rk) < q. Thus,

xj11 · · · xjnn = (q1(x1)(x
q
1 − x1) + r1(x1)) · · · (qn(xn)(xqn − xn) + rn(xn))

Expanding out the expression on the right-hand side, we see that the only term without
of factor of xqk − xk for some 1 ≤ k ≤ n is r1(x1) · · · rn(xn), which since deg(rk) < q is a
polynomial of degree < q in every variable, as required.
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3.11 Irreducibility Criteria

In section 3.9 we talked a lot about irreducible polynomials, but I never gave you any tools for
recognizing them! This section aims to rectify that, following an identical section in [Lan05]9.
There’s not much comment to be made here, it’s just three theorems useful for this purpose.

Theorem 3.11.1 (Eisenstein’s Criteria). Let R be a UFD, and F = FF(R). Let f(x) =
anx

n + · · ·+ a0 ∈ R[x] be a polynomial of degree at least one. Let p ∈ R be prime. Then if

1. p ∤ an

2. p | ak for all 0 ≤ k < n

3. p2 ∤ a0

f(x) is irreducible.

Proof. By proposition 3.9.11 and Theorem 3.9.14, we may assume that f is primitive. Sup-
pose f(x) were reducible, say f(x) = g(x)h(x). Let

f(x) = anx
n + · · ·+ a0 g(x) = bmx

m + · · ·+ b0 h(x) = ckx
k + · · ·+ c0

Then since p2 ∤ a0 = b0c0, we may assume, without loss of generality, that p ∤ c0 and p | b0.
Since p ∤ an = bmck, we conclude that p ∤ bm. We will now show, by induction, that p | bk for
all 0 ≤ k ≤ m, a contradiction. The case k = 0 is done. Suppose it holds for some k < m,
and every number before that. Then

ak+1 = bk+1c0 + bkc1 + · · ·+ b0ck+1

where we allow for cj = 0 if necessary. Note that since f(x) is primitive, we may assume that
g(x), c(x) are both of degree at least one. Hence, m < n, so p | ak+1. Since p ∤ c0, it follows
then by induction that p | bk+1, as claimed.

Theorem 3.11.2 (Reduction Criteria). Let R,R′ be integral domains, and φ : R → R′ a
homomorphism. Let F, F ′ be the fraction fields of R,R′. Let f ∈ R[x] be such that φ(f) ̸= 0
and deg(φ(f)) = deg(f) ≥ 1. Then if φ(f) is irreducible in F ′[x], f has no factorization
into a product of two degree one or higher polynomials in R[x].

Proof. Suppose f is reducible in R[x], say f(x) = g(x)h(x), where deg(g), deg(h) ≥ 1. Then
φ(f) = φ(g)φ(h), so since deg(φ(g)) ≤ deg(g), and similar with h, we conclude that since
deg(φ(f)) = deg(f), φ preserves the degrees of g, h. Hence, φ(f) is reducible in F ′[x].

Theorem 3.11.3 (Integral Root Test). Suppose R is a UFD and F = FF(R). Let f(x) =
anx

n + · · ·+ a0 be a polynomial in R[x]. Let α ∈ F be a root of f , and write α = c/d, where
GCD(c, d) = 1 (i.e. the GCD are only units). Then c | a0 and d | an. Furthermore, if an is
a unit in R, then α ∈ R.

9Most of the results can also be found in the exercises of [Jac09]
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Proof. We get
0 = f(α) = an(c/d)

n + · · ·+ a0

Multiplying both sides through by dn gives

0 = anc
n + an−1c

n−1d+ · · ·+ a0d
n

Thus, it follows that c, d | ancn + a0d
n. Since GCD(c, d) = 1, the desired result comes from

this.

3.12 Symmetric Polynomials

As we saw in previous sections, multivariable polynomials, while not PIDs, are still UFDs. It’s
worth asking then whether there’s any structure to their factorizations. The answer turns
out to be yes, but only for a certain class of multivariable polynomials called symmetric
polynomials. This section follows similar ones in [Lan05] and [Jac09].

We begin by taking a small detour to talk about algebraic independence.

Definition 3.12.1. Let R ⊂ S be a subring. A set of elements a1, . . . , an ∈ S are called
algebraically independent over R if there exists no non-zero f ∈ R[x1, . . . , xn] such that
f(a1, . . . , an) = 0.

Note. We can extend this definition to infinite sets of elements by stating that it is alge-
braically independent if all finite subsets are algebraically independent.

The following result is fairly immediate from this definition, and is left to the reader.

Proposition 3.12.2. Let R ⊂ S be a subring, and choose any a1, . . . , an ∈ S. Then the
evaluation homomorphism φ : R[x1, . . . , xn]→ R[a1, . . . , an] is an isomorphism if and only if
a1, . . . , an are algebraically independent.

This will become relevant later to show a very interesting result. But for now, let’s get back
to the main topic at hand and work towards defining symmetric polynomials.

Definition 3.12.3. Let f ∈ R[x1, . . . , xn], σ ∈ Sn. We define the action of σ on f , denoted
f(σ), by

σ(f(x1, . . . , xn)) = f(xσ(1), . . . , xσ(n))

f is fixed by σ if σ(f) = f , and is symmetric if it is fixed by every permutation in Sn.

The set of all symmetric polynomials forms a subring of R[x1, . . . , xn], which we call Symn(R).
The main result we build towards is rather surprising, namely that

Symn(R)
∼= R[x1, . . . , xn]

For this, we’ll of course need to know what xk are mapping to. This role will be fulfilled by
what we call the elementary symmetric polynomials.
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Definition 3.12.4. Consider the polynomial F ∈ R[x1, . . . , xn][X] given by

F (X) = (X − x1)(X − x2) · · · (X − xn)

We expand this out, getting an expression of the form

F (X) = Xn − s1Xn−1 + · · ·+ (−1)nsn

Then sk ∈ R[x1, . . . , xn] are symmetric, and we call sk the kth elementary symmetric poly-
nomial.

Note. The factors of ±1 in this definition are arbitrary, and just done to make the expressions
in the following proposition a bit nicer. It’s also clear from this definition that each xk is
algebraic over R[s1, . . . , sn].

One may ask what these sk actually look like. This, it turns out, is easy enough to answer.

Proposition 3.12.5. Let sk ∈ Symn(R), and let Γk be the set of all choices of k numbers
from {1, . . . , n}. Then

sk =
∑

{a1,...,ak}∈Γk

xa1 · · ·xak

Proof. By looking at F (X), we can see that each term in sk comes from multiplying k
different (−1)xj together. Thus,

(−1)jsk =
∑

{a1,...,ak}∈Γk

(−1)jxa1 · · ·xak

We need two more concepts before stating our main result, homogeneity and weight.

Definition 3.12.6. Let xk11 · · ·xknn be a monomial in R[x1, . . . , xn]. We define the total degree
of this term to be k1 + · · · + kn, and the weight to be k1 + 2k2 + · · · + nkn. A polynomial
f ∈ R[x1, . . . , xn] is called homogeneous if all of its terms have the same total degree, and its
total degree t(f) and weight w(f) are the maximum total/weight degree of all of its terms.

It’s clear from proposition 3.12.5 that the elementary symmetric polynomials are homoge-
neous, and have total degree k. We can also now, finally, state our main theorems.

Theorem 3.12.7. Let f ∈ R[x1, . . . , xn] be symmetric polynomial such that t(f) = d. Then
there exists g ∈ R[x1, . . . , xn] such that w(g) ≤ d and

f(x1, . . . , xn) = g(s1, . . . , sn)

Furthermore, if f is homogeneous, then every monomial in g has weight d.
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Proof. We start with induction on n. The result is clear for n = 1, since then s1 = x and
Symn(R) = R[x]. Now, suppose that the result holds for symmetric polynomials in n − 1

variables, where n ≥ 2. We define s
(0)
k to be the kth elementary symmetric polynomial in

R[x1, . . . , xn] with xn evaluated to zero. Note that s
(0)
n = 0, so

X(X − x1) · · · (X − xn−1) = X(Xn−1 − s(0)1 Xn−2 + · · ·+ (−1)n−1s
(0)
n−1)

Thus, s
(0)
k is the kth elementary symmetric polynomial in R[x1, . . . , xn−1] for 1 ≤ k ≤ n− 1.

Now, we proceed by induction on d. If d = 0, then the result is clear. Suppose the result
holds for all symmetric polynomials in n − 1 variables with total degree < d, where d ≥ 1.
Let f ∈ Symn(f) be such that t(f) = d. By the induction on n, there exists some polynomial
g ∈ R[x1, . . . , xn−1] of weight ≤ d such that

f(x1, . . . , xn−1, 0) = g(s
(0)
1 , . . . , s

(0)
n−1)

Note that t(g) ≤ d in R[x1, . . . , xn]. Thus, we conclude that

f1(x1, . . . , xn) = f(x1, . . . , xn)− g(s1, . . . , sn−1)

is a symmetric polynomial such that t(f1) ≤ d. Since f1(x1, . . . , xn−1, 0) = 0, we conclude
that xn | f1. But f1 is symmetric, and therefore xk | f1 for all 1 ≤ k ≤ n. Therefore, there
exists f2 ∈ Symn(R) such that

f1(x1, . . . , xn) = x1 · · · xnf2(x1, · · · , xn)

Since t(f1) ≤ d, t(f2) ≤ d − n < d. Thus, there exists by the inductive hypothesis some
h ∈ R[x1, . . . , xn] such that w(h) ≤ w(f2) and

f2(x1, . . . , xn) = h(s1, . . . , sn)

Plugging this back into the above equations we get

f(x1, . . . , xn) = x1 · · ·xnh(s1, . . . , sn)− g(s1, . . . , sn−1) = snh(s1, . . . , sn)− g(s1, . . . , sn−1)

Calling snh(s1, . . . , sn) − g(s1, . . . , sn−1) = r(s1, . . . , sn), we see that w(r) ≤ d, as required.
For the second part of this theorem, we do the same induction. It clearly holds in the base
cases, so suppose f ∈ Symn(f) such that t(f) = d is homogeneous. By the induction on n,
there exists some polynomial g ∈ R[x1, . . . , xn−1] with every monomial of weight d such that

f(x1, . . . , xn−1, 0) = g(s
(0)
1 , . . . , s

(0)
n−1)

Note that t(g) = d in R[x1, . . . , xn]. Thus, we conclude that

f1(x1, . . . , xn) = f(x1, . . . , xn)− g(s1, . . . , sn−1)

is either zero (in which case we’re done) or a symmetric polynomial such that t(f1) = d.
Since f1(x1, . . . , xn−1, 0) = 0, we conclude that xn | f1. But f1 is symmetric, and therefore
xk | f1 for all 1 ≤ k ≤ n. Therefore, there exists a homogeneous f2 ∈ Symn(R) such that

f1(x1, . . . , xn) = x1 · · ·xnf2(x1, · · · , xn)
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Since t(f1) = d, t(f2) = d − n. Thus, there exists by the inductive hypothesis some h ∈
R[x1, . . . , xn] such that every monomial in h has weight d− n and

f2(x1, . . . , xn) = h(s1, . . . , sn)

Plugging this back into the above equations we get

f(x1, . . . , xn) = x1 · · ·xnh(s1, . . . , sn)− g(s1, . . . , sn−1) = snh(s1, . . . , sn)− g(s1, . . . , sn−1)

Calling snh(s1, . . . , sn) − g(s1, . . . , sn−1) = r(s1, . . . , sn), we see that the weight of every
monomial in r is d, as required.

Theorem 3.12.8. The elementary symmetric polynomials are algebraically independent over
R.

Proof. The result is clear for the case n = 1, so we proceed by induction. Let n ≥ 2,
suppose the result holds for < n, and that there existed some f ∈ R[x1, . . . , xn] such that
f(s1, . . . , sn) = 0. In particular, choose f to have a minimal (non-zero) total degree, call it
t(f) = d. Write

f(x1, . . . , xn) = f0(x1, . . . , xn−1) + · · ·+ fm(x1, . . . , xn−1)x
m
n

where fk ∈ R[x1, . . . , xn] and fm ̸= 0. We can note that, using the notation of the proof of
Theorem 3.12.7

0 = f(s
(0)
1 , . . . , s

(0)
n−1, 0) = f0(s

(0)
1 , . . . , s

(0)
n−1)

By the inductive hypothesis, s
(0)
1 , . . . , s

(0)
n−1 are algebraically independent over R[x1, . . . , xn−1],

so f0 = 0. But then if f ̸= 0

f(x1, . . . , xn) = xn(f1(x1, . . . , xn−1) + · · ·+ fm(x1, . . . , xn−1)x
m−1
n )

so f1(x1, . . . , xn−1) + · · ·+ fm(x1, . . . , xn−1)x
m−1
n is a polynomial of lower total degree which

evaluates to zero on s1, . . . , sn, a contradiction. Hence, f = 0 as required.

This of course gives the following immediate result.

Corollary 3.12.8.1. R[s1, . . . , sn] ∼= R[x1, . . . , xn].

3.13 Complex Numbers and Quaternions*

The topics in this section will be pretty much completely irrelevant for the rest of the text,
the author just gave a lecture on them once that they liked and doesn’t want that work to
go to waste. The material contained here is pulled from a combination of [Jac09], [Gub21],
and the author’s own head. It assumes basic knowledge of the complex numbers.

The real numbers, from an analytic perspective, are wonderful. They are however, from an
algebraic perspective, terrible. Why? Well, in algebra we’re usually in the business of solving
for the roots of polynomials. And it turns out that a lot of very simple polynomials in R[x]
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have no roots in R[x], and in fact are irreducible. To fix this, we’re going try defining a
new ring which adds solutions to polynomials to R. Let’s start by adding a solution to the
simplest polynomial in R[x] with no roots, x2 + 1. To do this, we define our new ring to be

C =
R[x]

(x2 + 1)

What we’ve done here is sort of a sleight of hand. If we let I = (x2 + 1), then we can see
that x+ I ∈ C. Thus, we can evaluate f(x) = x2+1 in C at x+ I, which gives the following

f(x+ I) = (x+ I)2 + (1 + I) = (x2 + 1) + I = 0

The root we’ve added to f is exactly x + I!. It’s not too hard to see that −x + I is also a
(distinct) root of f in this new ring. In fact, it turns out that all the roots of every polynomial
in R[x] are contained in C. The reason for this is the following very simple theorem.

Theorem 3.13.1. C ∼= C.

Proof. Note that since x2 = 1 in C, any element in C has a unique representation of the form
a+ bx, where a, b ∈ R. It is then a quick verification that φ(a+ bx) = a+ bi is a well-defined
isomorphism.

One could choose to define C in this manner, as the field R[x]/(x2 + 1). In an algebraic
context, this is actually a quite intuitive way of defining C. The statement above about
finding roots for any polynomial also falls out of this result, as we have (from many different
field) the following.

Theorem 3.13.2 (The Fundamental Theorem of Algebra). Every f ∈ R[x] has, including
multiplicity10, n roots in C.

Great, we’ve added all the solutions to polynomials we could ever want. But we don’t stop
here, because there’s a new problem. As you would learn almost immediately in any class
covering the complex numbers, C is just R2 endowed with a multiplication. So can we in
turn endow C2, or equivalently R4, with a multiplication? The answer is yes, if we’re willing
to give up on that multiplication being commutative.

Definition 3.13.3. The quaternions, denoted H, are C2 with the standard vector addition
and a multiplication given by

(a, b) · (c, d) = (ac− b∗d, da+ bc∗)

There are many useful properties and representations of the quaternions. Proving them is
mostly just very tedious symbol pushing, so we simply list them below.

Proposition 3.13.4. H is a non-commutative division ring.

Proposition 3.13.5. The following spaces are all isomorphic.

10This is defined in the usual manner from grade school.
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1. H

2. R[i, j, k]/I, where I = (i2+1, j2+1, k2+1, ij+ ji, k+ ji, jk+ kj, i+ kj, ki+ ik, j+ ik)

3. The subset of C2×2 consisting of matrices of the form(
a b
−b∗ a∗

)
where a, b ∈ C, and ∗ is complex conjugation.

Furthermore, in the standard form of these isomorphisms, the following elements are equiv-
alent (where a, b, c, d ∈ R)

1. (a+ bi, c+ di)

2. a+ bi+ cj + dk

3. (
a+ bi c+ di
−c+ di a− bi

)
The latter of these forms also gives us the inverse of any non-zero quaternion, using the
formula for the inverse of a 2x2 matrix.

Proposition 3.13.6. If (a, b) ∈ H is non-zero, then (a, b)−1 = (|a|2 + |b|2)−1(a∗,−b).

We call this factor |a|2 + |b|2 the norm of the quaternion, and denote it N((a, b)). One can
note that this is the determinant of the matrix(

a+ bi c+ di
−c+ di a− bi

)
Thus, N is a multiplicative homomorphism and N(a+bi+cj+dk) = a2+b2+c2+d2. We call
(a∗,−b) the conjugation of the quaternion, and denote it (a, b)∗. Thus, the above proposition
could be compressed to saying that for a ∈ H, a−1 = a∗

N(a)
, just like the inverses in C. One

can also check that aa∗ = N(a), and that the complex conjugate is a field automorphism of
H.

All these results are well and good, but to justify doing all of this let’s look at some useful
applications of quaternions. All of classical physics can technically be formulated in terms of
quaternions, it’s just a bad way to do it. Except for exactly one area, rotations.

Proposition 3.13.7. Every quaternion h ∈ H can be written uniquely in the form

h = a(cos(θ) + n sin(θ))

where θ, a ∈ R, n = n1i+ n2j + n3k, and n
2
1 + n2

2 + n2
3 = 1.
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Note that n is essentially a unit vector in R3, and that a acts like a magnitude. Thus,
numbers in H with real component 0, which we denote Im(H), encode R3. This connects
with rotations in the following manner.

Proposition 3.13.8. Let q = cos(θ) + n sin(θ) ∈ H, and let h ∈ Im(H). Then the map
h 7→ qhq∗ is the rotation of h by an angle 2θ about the axis collinear to n in R3.

This gives us an efficient way to store and compute rotations! We can also, in a similar
manner, use quaternions to compute the cross and dot product. In fact, looking at vectors
in R3 as quaternions

u · v = −uv + vu

2
u× v =

uv − vu

2

Quaternions also have numerous uses in number theory, many of which are outlined in
[Gub21].

There is, of course, one remaining question. Can we pull this trick again, and endow H2

with a multiplication? The answer is yes, but the result won’t be a ring and will instead
be something called a R (or C)-algebra. Essentially, you can multiply numbers in H2, but
that multiplication won’t be associative. This trend continues, with each step up the ladder
losing more and more nice properties that multiplication could have. If you’d like to learn
more about this, see [Gub21].

3.14 Chinese Remainder Theorem*

The Chinese Remainder Theorem is one of the most fundamental theorems in ring theory,
and yet fit nowhere anywhere else in this chapter. Nor is it used again for the remainder
of this book, except perhaps in the final chapter. I put it here for lack of a better place,
but despite its ”optional” marking I would highly recommend going over this section. The
content of this section is based on lectures given by Dr. Kalle Karu at UBC.

Let’s start with some preliminaries.

Definition 3.14.1. Let R be a ring and {Ij}nj=1 a set of ideals of R. We define

1.
n∑
j=1

Ij =
{ n∑

j=1

fj | fj ∈ Ij
}

2.
n∏
j=1

Ij =
{ m∑
k=1

n∏
j=1

fj,k | fj,k ∈ Ij,m ∈ Z+
}

These are called the sum and product ideals respectively.
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It is not too hard to show that, like the names suggest, the sum and product ideals are ideals
in R (the latter is only guaranteed to be an ideal when R is commutative). It is also clear
that

∏n
j=1 Ij ⊂

⋂n
j=1 Ij. The Chinese Remainder theorem first tells us sufficient conditions

for these two expressions to be equal, namely the condition of ideals being coprime.

Definition 3.14.2. Two ideals I, J ⊂ R are coprime if I + J = R.

Theorem 3.14.3 (Chinese Remainder Theorem (CRT) I). Let I1, . . . , In ⊂ R be a collection
of pairwise coprime ideals in a commutative ring. Then

n∏
j=1

Ij =
n⋂
j=1

Ij

Proof. It suffices to show that
∏n

j=1 Ij ⊃
⋂n
j=1 Ij. First, suppose that n = 2. Pick any

x ∈ I1 ∩ I2. Since I1 + I2 = R, there exist some y1, y2 ∈ I1, I2 such that y1 + y2 = 1.
Therefore,

x = x(y1 + y2) = y1x+ xy2 ∈ I1I2
as required. Now, suppose n ≥ 2. Set

∏n−1
j=1 Ij = I. By the case n = 2, it suffices to show

that I, In are coprime. Since Ik, In are pairwise coprime for each 1 ≤ k ≤ n− 1, we can find
xk ∈ Ik, yk ∈ In such that xk + yk = 1. Then

∏n−1
k=1 xk ∈ I,

n−1∑
k=1

yk

n−1∏
j=k+1

xj ∈ In

where we say that
∏n−1

j=k+1 xj = 1 when k = n− 1, and one can verify

n−1∏
k=1

xk +
n−1∑
k=1

yk

n−1∏
j=k+1

xj = 1

Thus, I + In = (1) = R as claimed.

Corollary 3.14.3.1 (Chinese Remainder Theorem II). Endow the cartesian product of rings
with a ring structure via element-wise operations. Let I1, . . . , In ⊂ R be ideals in an arbitrary
ring. Let q : R → R/I1 × · · · × R/In be the ring homomorphism induced by the quotient
maps, that is the one given by

q(x) = (x mod I1, . . . , x mod In)

Then q is surjective if and only if the Ik are pairwise coprime.

Proof. Suppose q is surjective. Pick any 1 ≤ k ≤ n, and j ̸= k. Then there exists some
x ∈ R such that

q(x) = (. . . , 1, 0, 0, . . . )

where the 1 is in the kth position. Then x ∈ Ij and ∃y ∈ Ik such that x = y + 1, so
x− y = 1⇒ Ij + Ik = (1) = R. Thus, all the ideals are pairwise coprime.

Now, suppose that all the ideals are pairwise coprime. Set I =
∏n−1

j=1 Ij. By the proof of CRT
I, we can find x ∈ I, y ∈ In such that x+ y = 1. Then q(x) = (0, 0, . . . , 1), and it follows by
a symmetric argument to this that q is surjective.

70



CHAPTER 3. RINGS 3.14. CHINESE REMAINDER THEOREM*

Corollary 3.14.3.2 (Chinese Remainder Theorem III). Let I1, . . . , In ⊂ R be coprime ideals
in an arbitrary ring. Then

R⋂n
i=1 Ii

= R/I1 × · · · ×R/In

Also, if R is commutative then

R∏n
i=1 Ii

= R/I1 × · · · ×R/In

Proof. Let q : R → R/I1 × · · · × R/In be the ring homomorphism induced by the quotient
maps, as defined in CRT II. By CRT I/II, it suffices to show that ker(q) =

⋂n
i=1 Ii. But this

is immediate.

For an interesting example of CRT in action, I suggest you look into the history of the
theorem, particularly its original form in terms of Z.
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Chapter 4

Modules

4.1 Basics Definitions

Modules, in a broad sense, are simply generalizations of vector spaces to be over arbitrary
rings rather than fields. We begin their study here, following (loosely) similar explanations
from [Jac09] and [Lan05].

Definition 4.1.1. Let R be a ring. A left R-module M is an Abelian group (M,+, 0)
together with a scalar multiplication operation · : R × M → M satisfying the following
axioms for all x, y ∈ R, v, u ∈M

1. x · (v + u) = x · v + x · u

2. (x+ y) · v = x · v + y · v

3. x · (y · v) = (xy) · v

4. 1 · v = v

We also have right R-modules, which are defined similarly.

Definition 4.1.2. Let R be a ring. A right R-module M is an Abelian group (M,+, 0)
together with a scalar multiplication operation · : M × R → M satisfying the following
axioms for all x, y ∈ R, v, u ∈M

1. (v + u) · x = v · x+ u · x

2. v · (x+ y) = v · x+ v · y

3. (v · x) · y = v · (xy)

4. v · 1 = v

A quick note about notation before we move on : like with everything else in algebra, we
generally drop the · from our scalar multiplication expressions and just write xv. We will
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also, in this text, use the convention of underlining symbols which represent module elements.
This is not standard, and most other texts will have no particular convention in this regard.

At first glance, left and right R-modules seem like the exact same thing, and if R is commu-
tative they in fact are the same thing. But when R is not commutative we get complications.
To understand why, we need to take a diversion into endomorphisms of Abelian groups and
anti-morphisms. Let’s start by examining the structure of a left R-module M .

Proposition 4.1.3. Suppose M is a left R-module. For each x ∈ R, let φx :M →M be the
map given by φx : v → xv. Then the map f : x 7→ φx is a ring homomorphism from R into
End(M), the ring of endomorphisms of M as an Abelian group.

Proof. That φx is an endomorphism of M is given by the first axiom in definition 4.1.1. To
check that f : x 7→ φx is a ring homomorphism, we first need to give a ring structure to
End(M). Pick any φ, ψ ∈ End(M) and v ∈M . It is not too hard to see that the operations

(φ+ ψ)(v) = φ(v) + ψ(v)(φ · ψ)(v) = (φ ◦ ψ)(v)

put a ring structure on End(M). That f is a homomorphism is then guaranteed by axioms
2-4 of definition 4.1.1.

Of course, the above result also tells us that any homomorphism from R to End(M) will
give us a left R-module structure. Thus, we could have defined a left R-module M as a com-
mutative group M with ring homomorphism R → End(M). This is where right R-modules
differ. The map v 7→ v · x will still be an endomorphism of M . However, with the ring struc-
ture we’ve given to End(M), we would get that f(xy) = f(y)f(x), not f(x)f(y). This type
of function is called an anti-morphism, and is actually quite similar to homomorphisms. In
fact, an analogous result to proposition 4.1.3 holds for right R-modules using anti-morphisms.
However, anti-morphisms are not homomorphisms (in general), so this shows that left and
right R-modules are not necessarily the same. One may note that they are the same if R is
commutative, hence the earlier statement that left and right R-modules are no different for
commutative R.
For the rest of this chapter, we work with left R-modules. Keep in mind that analogous
results will hold for right R-modules in almost all cases, if you wish to see these results
explicitly see [Jac09]. With this in mind, let us give some basic definitions of module theory.

Definition 4.1.4. Let M be a left R-module. A submodule N ⊂ M is a subset such that
RN ⊂ N , where

RN =
{∑

α

rαvα | rα ∈ R, vα ∈ N
}

where all sums are finite. Put more simply, it’s a subset of M which is itself an R-module
using the structure of M as an R-module.

Like with ideals, we also have the following two constructions which are also subgroups.

Proposition 4.1.5. Let {Mi}i∈I be a collection of submodules of a left R-module M . Then

1.
⋂
i∈IMi
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2. ∑
i∈I

Mi =
{ ∑
i,finite

vi | vi ∈Mi

}
are both sub-modules of M .

The former of these allows us to make the following definition.

Definition 4.1.6. Let S ⊂M , where M is a left R-module. Then the submodule generated
by S, denoted SpanR(S), is the intersection of all submodules of M containing S.

Again, like for subgroups and ideals, we have a simple way of explicitly writing out these
generated sub-modules.

Proposition 4.1.7. Let S ⊂M , where M is a left R-module. Then

SpanR(S) =
{ n∑

i=1

rivi | ri ∈ R, vi ∈ S, n ∈ Z+
}

Before moving on, let’s list a pair of facts about modules that would be no fun to prove.

Proposition 4.1.8. Suppose that M is a left R-module, and N ⊂M a submodule. Then

1. 0v = 0 and (−1)v = −v, for any v ∈M .

2. N is an additive subgroup of M .

Next, we move to talking about module homomorphisms.

Definition 4.1.9. Let M,N be left R-modules. A module homomorphism φ : M → N is
a homomorphism of additive groups satisfying, for any x ∈ R, v ∈ M , φ(rv) = rφ(v). We
denote the set of all module homomorphisms from M to N by HomR(M,N).

Note. HomR(M,N) is itself a left R-module. You will also here module homomorphisms be
called R-linear maps.

The kernel of a module homomorphism is just the kernel of the underlying homomorphism
of additive groups. It is easy to show that this kernel (and the image of a module homomor-
phism) is a submodule as well. One can also check that, if N is a submodule of M , then
M/N is itself a left R-module, with operations inherited in the normal way from N .

At this point, I’m going to do something quite interesting. In the previous sections, I proved
the fundamental theorems of homomorphisms. Here, I’m just going to state them.

Theorem 4.1.10 (First Fundamental Theorem of Module Homomorphisms). Let φ ∈ HomR(M,N)
be a module homomorphism. Then the natural projection map p :M →M/ ker(φ) is a mod-
ule homomorphism, and the map f : M/ ker(φ) → Im(φ) given by f : v + ker(φ) → φ(v) is
a well-defined module isomorphism. Finally, the following diagram commutes.
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M N

M/ ker(φ)

φ

p
f

Theorem 4.1.11 (Second Fundamental Theorem of Module Homomorphisms). Let φ ∈
HomR(M,N) be a surjective module homomorphism. Then

1. An additive subgroup S ⊂M containing ker(φ) is a submodule if and only if φ(S) is a
submodule.

2. The map S 7→ φ(S) of submodules of M containing ker(φ) is a bijection onto submod-
ules of N .

3. If M ′ ⊂M is a submodule containing ker(φ), then M/M ′ ∼= N/φ(M ′).

Corollary 4.1.11.1. Suppose K ⊂ N are both submodules of a left R-module M . Then

M/N ∼=
M/K

N/K

Theorem 4.1.12 (Third Fundamental Theorem of Module Homomorphisms). Let N,K be
submodules of a left R-module N . Then

N

N ∩K
∼=
N +K

K

I don’t bother with the proofs here for a good reason : these theorems are again essentially
identical to those found in section 2.4 and section 3.4. At this point, you should be able to
do them on your own, or at the very least believe them when you see them. If you do not feel
that you’ve reached this point yet, then I would suggest reading those two sections again.

4.2 Free Modules and Bases

We take on now the vitally important task of generalizing bases from vector spaces to modules.
To do so, we take a synthesis of similar sections in [Jac09] and [Lan05], along with some
insights from course notes [Bad10] and linear algebra on vector spaces [Rom07].

Definition 4.2.1. Let M be a left R-module, and S ⊂M . We call S

1. Linearly independent if ∑
v∈S

avv = 0⇒ av = 0,∀v ∈ S

2. Linearly dependent if it is not linearly independent.

3. A basis if it is linearly independent and SpanR(S) =M .
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These definitions are identical to those we use in vector spaces.

Note. In expressions such as ∑
v∈S

avv = 0⇒ av = 0,∀v ∈ S

we always assume that only finitely many terms have a non-zero av, and ignore those with
zero. Indeed, the expression is not well-defined otherwise. This just gives us a compact way
to represent all finite linear combinations of elements in S.

Many of the nice properties you’re used to from vector space bases carry over to modules as
well.

Proposition 4.2.2. Let M be a free left R-module with basis V = {vi}i∈I . Then each u ∈M
can be written in a unique way in the form

u =
∑
i∈I

aivi

where ai ∈ R.

Proof. The existence is simply the statement that V is spanning. For uniqueness, suppose
that ∑

i∈I

aivi =
∑
i∈I

vivi

Rearranging, we get ∑
i∈I

(ai − bi)vi = 0

which by linear independent implies that ai = bi for every i ∈ I.

Proposition 4.2.3. Let M be a free left R-module with basis V = {vi}i∈I . Let N be any
other left R-module, and for each i ∈ I choose some ui ∈ N . Then there exists a unique
φ : HomR(M,N) such that φ(vi) = ui, for all i ∈ I.

Proof. By the previous proposition, and v ∈ V can be written uniquely in the form

v =
∑
i∈I

aivi

Thus, by linearity the only way φ could be defined is

φ(v) =
∑
i∈I

aiui

This gives us that φ is unique and well-defined. Checking that it is a module homomorphism
is simple, and left to the reader.

Corollary 4.2.3.1. If M,N are left R-modules with bases V, U such that |V | = |U |, then
M ∼= N .
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In light of that last result, it is natural to ask whether modules have a unique basis cardinality
(or for finite cases, basis size). The answer, it turns out, is sufficiently strange that we’ll spend
the rest of this section answering it.

Let’s start by simplifying our terminology. Let I be an arbitrary set, and R a ring. We
denote

∏
i∈I R by RI . We can endow a left R-module structure on this in the following way.

(ai)i∈I + (bi)i∈I = (ai + bi)i∈I c · (ai)i∈I = (cai)i∈I

We denote the sequence with a one in the ith position and zeroes everywhere else by ei ∈ RI .
It is not hard to check that B = {ei}i∈I is a basis for RI , we call this the standard basis. By
corollary 4.2.3.1, any free left R-module is isomorphic to RI for some set I. Thus, we can
reduce our study of free left R-modules to just the study of those RI .

In light of this, we can carry over more results we know from basic linear algebra. In
particular, in ”finite-dimensional” spaces we can represent linear maps as matrices (relative
to a pair of basis chosen), with the process being identical to that done for vector spaces. As
such, the following result probably shouldn’t be too surprising.

Theorem 4.2.4. Let n,m ∈ N. Then Rn ∼= Rm if and only if there exists a pair of matrices
A ∈Mn,m(R), B ∈Mm,n(R) such that AB = Idn, BA = Idm.

Proof. First, suppose that there exists an isomorphism φ : Rn → Rm. Let {ei}ni=1, {xj}mj=1

be the standard bases for Rn, Rm respectively. Then since φ is an isomorphism, φ({ei}ni=1) is
a basis for Rm (this is not hard to check). We’ll write y

i
= φ(ei). Then for each 1 ≤ i ≤ n,

there exist unique ai,j ∈ R such that

y
i
=

m∑
j=1

ai,jxj

Similarly, for each 1 ≤ j ≤ m we can find unique bj,i such that

xj =
n∑
i=1

bj,iyi

We write A = (ai,j), B = (bj,i). We’ll show that these are the desired matrices. First, we get

(AB)i,j =
m∑
k=1

ai,kbk,j

Now, since

y
i
=

m∑
j=1

ai,jxj =
m∑
j=1

n∑
k=1

ai,jbj,kyi =
n∑
k=1

( m∑
j=1

ai,jbj,k

)
y
k

By the uniqueness of the ai,j in the original expression, it follows that

(AB)i,j =
m∑
k=1

ai,kbk,j = δij ⇒ AB = Idn
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We also get BA = Idm by the same argument.

Now, suppose that we have such matrices A,B. Then B is an R-linear map from Rn to Rm,
which the existence of A shows is invertible and hence an isomorphism.

In the case of commutative rings R, this result gives what we’d expect due to the following
lemma.

Lemma 4.2.5. Suppose R is a commutative ring and A,B ∈ Mn(R). Then AB = Idn ⇒
BA = Idn.

Proof. This follows from the properties of the determinant. Indeed, we get

det(BA) = det(B) det(A) = det(A) det(B) = det(AB) = 1

so BA is invertible. Then we note

BA = B(Idn)A = B(AB)A = (BA)2

Applying (BA)−1 on both sides, which we now know exists, gives the desired result.

Note. This result does not hold if R is not commutative.

Corollary 4.2.5.1. Suppose n,m ∈ N and R is commutative. Then Rn ∼= Rm if and only if
n = m.

Proof. The direction assuming n = m is obvious, so instead assume that Rn ∼= Rm. As-
sume, without loss of generality, that n < m. Using the same notation as in the proof of
Theorem 4.2.4, we instead define A,B ∈Mm(R) by

A =



a1,1 · · · a1,m
a2,1 · · · a2,m
...

...
...

an,1 · · · am,m
0 · · · 0
...

...
...

0 · · · 0


B =


b1,1 · · · a1,n 0 · · · 0
b2,1 · · · b2,n 0 · · · 0
...

...
...

...
...

...
bm,1 · · · bm,n 0 · · · 0



Then by the calculation in Theorem 4.2.4, we’d still get BA = Idn, but AB ̸= Idn, violating
lemma 4.2.5.

The above note is quite important here, as there are non-commutative ringsR whereRn ∼= Rm

and n ̸= m. I’ll leave it to the interested reader to look up counterexamples, as they don’t
tend to be one-line things. In general, we call any ring satisfying the above corollary an
invariant basis number (IBN) ring.

Perhaps the most remarkable fact out of all of this is that modules with infinite bases are
more well-behaved than finite ones! Indeed, if we replace n,m with infinite sets, then the
above corollary becomes true for any ring. More precisely, we have the following.
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Theorem 4.2.6. Suppose I, J are sets such that I is infinite. Then RI ∼= RJ if and only if
|I| = |J |.

Proof. Again, it suffices to show that RI ∼= RJ ⇒ |I| = |J |. First, we’ll show that J is
infinite. Indeed, suppose that J were finite. Let φ : RI → RJ be a module isomorphism, xi
be the images of the standard basis elements of RI under φ, and y

j
be the standard basis

elements of RJ . Since φ is an isomorphism, {xi}i∈I is a basis of RJ . Thus, each y
j
can be

written as a linear combination of finitely many xi. But since J is finite, this would imply
that finitely many xi span RJ , and hence that {xi}i∈I is not linearly independent. This is
impossible, and hence J must be infinite.

Now, we can assume that J is also infinite. For each j ∈ J , let Uj ⊂ I be a finite subset such
that y

j
can be expressed as a linear combination of vectors in {xi}i∈Uj . Then since {y

j
}j∈J

is a basis, we must get ⋃
j∈J

Uj = I

Therefore, |J | ≤ |
⋃
j∈J Uj| ≤ |I|. A symmetric argument shows that |I| ≤ |J |, completing

the proof.

Note. If you’re not comfortable playing around with set cardinalities like this, I suggest
looking at the preliminaries in [Rom07].

If a module has a basis (this is not guaranteed), then we call the cardinality of this basis its
rank. Note that finite ranks, when they exist, may not be unique for non-IBN rings.

4.3 Direct Sums and Products

This section primarily follows the notes of [Sil23], with some ideas from [Lan05] and [Rom07].
We start by defining direct sums.

Definition 4.3.1. Let {Mi}i∈I be a collection of left R-modules. The direct sum of these
modules, denoted

⊕
i∈IMi, is the set of sequences in

∏
i∈IMi with finite support (i.e. finitely

many non-zero values) with addition defined element-wise and multiplication by

r(mi)i∈I = (rmi)i∈I

These have a couple properties which may be verified without too much difficulty.

Proposition 4.3.2. Let {Mi}i∈I be a collection of left R-modules. Then

1. Each Mi can be embedded in M =
⊕

i∈IMi via the canonical set embedding. That is,
calling our inclusions ιi :Mi →M , we define that ιi(m) to be the sequence with zeroes
everywhere except having m in the ith position.

2. Suppose {Bi}i∈I is a collection of bases for each Mi. Then
⋃
i∈I ιi(Bi) is a basis for M .

3. If n,m ∈ N, then Rn ⊕Rm ∼= Rn+m.
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4. (M1 ⊕M2)⊕M3
∼= M1 ⊕ (M2 ⊕M3)

There is a (sometimes) closely related notion that we’ve encountered, called the internal sum.

Definition 4.3.3. Let {Ni}i∈I ⊂M be sub-modules of a left R-module M . Then we define
the internal sum of these to be∑

i∈I

Ni = SpanR

(⋃
i∈I

Ni

)
= {finite sums of elements from the Ni}

Let φ :
⊕

i∈I Ni →
∑

i∈I Ni be the homomorphism defined by being the inclusion on each
Ni. This sum is called direct if φ is an isomorphism.

Ideally, we’d like all our sums to be direct, as breaking a module down into a direct sum of
simpler modules makes it much easier to work with. This, of course, isn’t the case, but we
do have simple rules for detecting when internal sums are and are not direct.

Theorem 4.3.4. Let {Ni}i∈I ⊂M be sub-modules of a left R-module M . Then the following
are equivalent.

1.
∑

i∈I Ni is direct and
∑

i∈I Ni =M .

2. For each i ∈ I, Ni ∩
(∑

j ̸=iNj

)
= {0}, and

∑
i∈I Ni =M .

3. Every m ∈ M has a unique representation as a finite sum of elements, each from a
different Ni.

Proof. First, suppose that (1) holds, and let φ :
⊕

i∈I Ni → M be the standard homomor-
phism. Pick i ∈ I, and suppose there exists mi ∈ Ni and αj ∈ R,mj ∈ Nj such that

mi =
∑
j ̸=i

αjmj

Defining −αi = 1, this implies in turn that

φ((αjmj)j∈I) = 0

But φ is an isomorphism, so it follows that mi = 0 and (2) holds.

Now, suppose that (2) holds, and that there exists two representations of some m ∈ M in
the form of (3), say

m =
∑
i∈I

mi =
∑
i∈I

xi

where mi, xi ∈ Ni. Without loss of generality, pick out some i ∈ I such that mi ̸= xi. Then
we get

mi − xi ∈ Ni\{0},mi − xi =
∑
j ̸=i

(xj −mj) ∈
∑
j ̸=i

Nj

violating (2). Thus, (3) must hold.
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Finally, suppose that (3) holds. That
∑

i∈I Ni = M is immediate from this, so let φ :⊕
i∈I Ni → M be the standard homomorphism. If ker(φ) is non-trivial, then 0 has two

distinct representations in the form of (3). Thus, ker(φ) is trivial, making φ and isomorphism
and (1) satisfied.

The direct sum can also be characterized by the following universal property.

Theorem 4.3.5. Let {Mi}i∈I be a collection of left R-modules with standard inclusions
ιi ∈ HomR(Mi,

⊕
i∈IMi), N some other R-module and fi ∈ HomR(Mi, N) be linear maps.

Then there exists a unique f ∈ HomR(
⊕

i∈IMi, N) such that f ◦ιi = fi. That is, the following
diagram commutes.

M1

M2

N
...

⊕
i∈IMi

ι1

f1

ι2

f2

f

Proof. The condition f ◦ ιi = fi forces the value of f on each ιi(Mi), so since
∑

i∈I ιi(Mi) =⊕
i∈M this homomorphism is unique if it is well-define. To check that it is well-defined by

the conditions f ◦ ιi = fi, we just need to check that it is single-valued, which is given by
condition (2) in Theorem 4.3.4.

In fact, we could have used this to define a direct sum. Indeed, starting at that point.

Definition 4.3.6. Let {Mi}i∈I be a collection of left R-modules. A direct sum of these
modules is a left R-module M and collection of injective homomorphisms ιi ∈ HomR(Mi,M)
satisfying the following property : If N is some other R-module and fi ∈ HomR(Mi, N)
linear maps, then there exists a unique f ∈ HomR(M,N) such that f ◦ ιi = fi. That is, the
following diagram commutes.

M1

M2

N
... M

ι1

f1

ι2

f2

f

We can derive the following result.
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Proposition 4.3.7. Any pair of direct sums of a collection {Mi}i∈I of direct modules have
a unique isomorphism between them satisfying the defining universal property.

Proof. Suppose ({ιi}i∈I ,M) and ({γi}i∈I , N) are two direct sums. Then there exists a unique
homomorphism f ∈ HomR(M,N) and a unique homomorphism g ∈ HomR(N,M) such that
the following two diagrams commute.

M1 M1

M2 M2

N
... M N

... M

ι1
γ1

ι1
γ1

ι2
γ2

ι2
γ2

f

g

It thus follows that (g ◦ f) ◦ ιi = g ◦ (f ◦ ιi) = g ◦ γi = ιi. Thus, the following diagram
commutes.

M1

M2

M
... M

ι1
ι1

ι2
ι2

g◦f

But of course, the following diagram also commutes

M1

M2

M
... M

ι1
ι1

ι2
ι2

IdM

so by the uniqueness property of the direct sum we conclude that g ◦ f = IdM . A similar
argument shows that f ◦ g = IdN , so f is the desired isomorphism. By the uniqueness
property of the direct sum, f is the only such isomorphism.

Essentially what we’re saying here is that given any pair of direct sums, we can find a
unique compatible isomorphism between them. Hence, there is in a sense only one direct sum
construction.
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We’ll next do our first example of what’s called dualizing. The premise is quite simple, what
would happen if we reversed all the arrows in definition 4.3.6?

Definition 4.3.8. Let {Mi}i∈I be a collection of left R-modules. A direct product of these
modules is a left R-moduleM and collection of surjective homomorphisms πi ∈ HomR(M,Mi)
satisfying the following property : If N is some other R-module and fi ∈ HomR(N,Mi) linear
maps, then there exists a unique f ∈ HomR(N,M) such that πi◦f = fi. That is, the following
diagram commutes.

M1

M2

N
... M

f1

f2

f

π1

π2

The first thing to check is that something actually satisfies this definition. What turns out
to work is essentially duplicating the original construction of the direct sum, but allowing all
sequences instead of just those with finitely many non-zero elements. It will be left to the
reader to check that this is the desired direct product, and that direct products, like direct
sums, are unique up to a unique compatible isomorphism. In note of this, we denote the
direct sum (rather confusingly) by

∏
i∈IMi.

There is something very important to notice here. Our definitions of the direct product and
sum depend only on the properties of homomorphisms. So there’s nothing to stop us from
taking these definitions and porting them over to rings or groups. Indeed, the direct products
and sums that have shown up in previous chapters could be defined by the same universal
property! We’ll look into this more in Part III.

Note. In the case of left R-modules, finite direct sums and products are the same, but infinite
ones are different. This does not necessarily carry over to other algebraic objects.

4.4 Free Modules over PIDs

From now on, we assume all our rings are PIDs and hence commutative. There
will no longer be a distinction between left and right modules as a result, and
we simply call both modules.
This, and the following three sections, are re-worked versions of similar topics as presented
in [Jac09]. That being said, I hope that you’ll find my explanations in this section much
cleaner than his, which are often quite poor.

Our main goal for the last three sections of this chapter will be to derive the Structure
Theorem for finitely generated modules over a PID. It makes sense then to consider free
modules, both as a simple case and because they in fact relate to all finitely generated
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modules. Indeed, suppose we have a module M over a PID R with generators v1, . . . , vvn.
Then we get a homomorphism φ : Rn →M given by φ(ei) = vi, and M

∼= Rn/ ker(φ).

The above observations give us a blueprint for understanding the structure of modules :
first understand free module, then the sub-modules ker(φ), and finally their quotient. Of
course, we already understand free modules over commutative rings quite well, so we can
move straight to step 2. This is completed via the following fundamental result.

Theorem 4.4.1. Let R be a PID, and n ∈ Z+. Then any sub-module M ⊂ Rn is free of
rank m ≤ n, where we define R0 = 0.

Proof. By induction on n. The case n = 0 is trivial. Now, suppose n = 1. Then any
submodule of R1 is an ideal in R, and hence since R is a PID if N ⊂ R1 is a submodule then
there exists some v ∈ R such that N = (v). Now, since R is a domain, av = 0 ⇒ a = 0 or
v = 0. Thus, either v = 0⇒ N = 0 or N ∼= R1, either way giving the desired result.

Now, consider some n ≥ 2 and suppose the result holds for n − 1. Denote by Rn−1 the
submodule (e2, . . . , en) ⊂ Rn. Then Rn−1 is free of rank n− 1, and Rn/Rn−1 is free of rank
one. Let N ⊂ Rn be any sub-module, and let q : Rn → Rn/Rn−1 be the standard quotient
homomorphism. If N ⊂ Rn−1 or is generated by a multiple of e1, then it is free of rank
≤ n− 1 by induction. Otherwise, note that by induction

1. N ∩Rn−1 is free of rank ≤ n− 1.

2. q(N) is free of rank 1.

Furthermore, since R is a domain, any v ∈ Rn can be written uniquely in the form
∑n

i=1 aiei,
where ai ∈ R (this is easy to check). By our second observation and the linear independence
of e1, . . . , en, there exists some x ∈ R such that for every v ∈ N , a1 = bx for some b ∈ R,
where b ∈ q(N). By our first observation, there exists a basis u2, . . . , ur of N ∩ Rn−1, where
0 < r ≤ n − 1. Let y ∈ N ∩ Rn−1 be an arbitrary non-zero element. We’ll show that
xe1 + y, u2, . . . , ur is a basis for N in Rn, hence making N free of rank ≤ n and completing
the proof by corollary 4.2.3.1. That this set is linearly independent is immediate from the
linear independence of u2, . . . , ur and of the standard basis. For spanning, note that there
exists some x ∈ R such that a1 = bx. Then bxe1+y ∈ N , and hence there exists some u ∈ N
such that bxe1+ by+u = v. But of course the coefficients of bxe1+ by and v on e1 are equal,
so by the uniqueness of that representation it follows that u ∈ N ∩Rn−1. Hence, u is in the
span of u2, . . . , un, completing the proof.

This is quite a powerful result. Indeed, if we can find a nice way of relating the bases of
Rn and any given submodule of Rn, then by our above observation that M ∼= Rn/ ker(φ) it
should give us a thorough understanding of the structure of M . We’ll therefore spend the
rest of this section giving a quick overview of changing bases/generators in modules, followed
by finding an algorithm to get simply-related bases in the next section.

Let N ⊂ Rn be a submodule. Then by the above theorem N is finitely generated, say with
generators u1, . . . , um, where potentially m > n. Writing out these generators in the unique

87



4.4. FREE MODULES OVER PIDS CHAPTER 4. MODULES

form

u1 = a11e1 + a12e2 + · · ·+ a1nen
u2 = a21e1 + a22e2 + · · ·+ a2nen
...

...

um = am1e1 + am2e2 + · · ·+ amnen

where aij ∈ R gives a matrix A = (aij) ∈ Mm×n(R), which we call the relations matrix of
this basis and set of generators (in this particular order).

Now, suppose that e′1, . . . , e
′
n is another basis for Rn (since R is commutative the basis size of

Rn is fixed), and u′1, . . . , u
′
r another set of generators for N . Let B be the companion matrix

of this pair. We wish to relate A and B via matrix multiplication. To start off, we define the
matrix P = (pij) ∈Mn(R) via the unique coefficients

e′i =
n∑
j=1

pijej

Similarly, we define the matrix Q = (qij) ∈Mr,m(R) by the (possibly non-unique) coefficients

u′i =
r∑
j=1

qijuj

There are a few things to show here. First, we claim that P is invertible. Indeed, defining
the matrix L = (ℓij) ∈Mn(R) via the unique coefficients

ei =
n∑
j=1

ℓije
′
j

we get

ei =
n∑
j=1

ℓij

n∑
k=1

pjkek =
n∑
k=1

( n∑
j=1

ℓijpjk

)
ei

which implies that
n∑
k=1

( n∑
j=1

ℓijpjk

)
= δij

Hence, LP = Idn and since R is commutative PL = Idn, making P invertible. Next, we
claim that B = QAP−1, giving us our desired relation between companion matrices. Indeed,
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one gets

u′i =
m∑
j=1

qijuj =
m∑
j=1

qij

n∑
k=1

ajkek =
m∑
j=1

qij

n∑
k=1

ajk

n∑
f=1

ℓkfe
′
f

=
n∑
f=1

( n∑
k=1

m∑
j=1

qijajk

)
ℓkfe

′
f =

n∑
f=1

( n∑
k=1

(QA)ik

)
ℓkfe

′
f

=
n∑
f=1

( n∑
k=1

(QA)ikℓkf

)
e′f =

n∑
f=1

(QAL)ife
′
f

Therefore, (QAL)if = bif , so QAP
−1 = B as claimed. If we happen to have chosen bases

for N , then Q will be invertible as well. This leads to A and B being what we call similar.
More specifically, two matrices A,B ∈ Mm,n(R) are similar (specifically that A is similar to
B, denoted A ∼ B) if there exists invertible matrices Q ∈ Mm(R), P ∈ Mn(R) such that
B = QAP−1.

Note. Similarity is an equivalence relation.

4.5 Matrices Over PIDs

Let’s cut straight to the chase, the normal form of matrices over PID.

Theorem 4.5.1. If A ∈Mm,n(R), where R is a PID, then there exists a matrix D ∈Mm,n(R)
similar to A of the form

D =



d1 0 0 0 0 · · · 0 · · · 0
0 d2 0 0 0 · · · 0 · · · 0
...

. . .
...

...
...

0 0 0 dr · · · 0 0 · · · 0
0 0 0 0 · · · 0 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 0 0 · · · 0


where di ̸= 0 and di | dj if i ≤ j.

The proof of this is extremely tedious, so we’ll separate all the setup here into a separate
section. We’ll start by defining Eij to be the matrix in Mn,n(R) with zeroes everywhere
except for a 1 in position i, j. We define our four elementary matrices, for any a, b, c, d ∈ R,
in the following manner.

1. Tij(a) = Idn+aEij

2. Di(a) = Idn+(a− 1)Eii

3. Pij = Idn−Eii − Ejj + Eij + Eji
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4. χ(a, b, c, d) = Idn+(a− 1)E11 + bE12 + cE21 + (d− 1)E22

Note that the last of these is only well-defined when n ≥ 2. The first three you may have
seen before in a class on basic linear algebra, and have the following effects.

1. Any X ∈ Mm×n(R) multiplied by Tij(a) on the left will result in X with the jth row
multiplied by a added to the ith row.

2. Any X ∈ Mm×n(R) multiplied by Di(a) on the left will result in X with the ith row
multiplied by a.

3. Any X ∈ Mm×n(R) multiplied by Pij on the left will result in X with the ith and jth
rows switched.

Multiplication on the right does the same thing, just with columns instead of rows. These
are the elementary row/column operations you’d do on matrices in normal linear algebra.

Note. Right multiplying would require the elementary matrix to be n×n, and left multiplying
m×m. We do not distinguish the two in our notation, and assume that the exact dimension
is clear from context.

Our goal will be to transform any matrix into its normal form (the one in Theorem 4.5.1)
using these elementary matrices. We’d therefore like each of these elementary matrices to be
reversible. This can be done by enforcing the following conditions.

1. Di(a) must have a be a unit.

2.

(
a b
c d

)
must be invertible to use χ(a, b, c, d).

It is not too difficult to check that these will suffice. Before doing our proof, we need one
final definition.

Definition 4.5.2. Let R be a PID. The length of an element a ∈ R, denoted ℓ(a), is the
number of prime factors (including multiplicities) in a prime factorization of a. If a is a unit,
we say that ℓ(a) = 0.

Note that since prime factorizations are unique up to multiplication by units, the above is a
well-formed definition. Now, let’s finally do this proof.

Proof of Theorem 4.5.1. Let A ∈ Mm,n(R) be an arbitrary matrix. If A = 0, then we are
done. Otherwise, suppose that a11 ∤ a1k, for some 1 ≤ k ≤ n. By swapping the kth
and 2nd columns (multiplying by P2k on the left), we may assume that a11 ∤ a12. Define
x = a11, y = a12, z = GCD(a, b). Then there exists some a, c ∈ R such that xa+ yc = d (this
is because Bézout’s lemma holds in any PID1). Defining b = yd−1, d = −xd−1 (note that
these are well-defined since d | x, y), we get that(

−d b
c −a

)(
a b
c d

)
= Id2

1I will provide a proof of this at the end of the section.
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Thus, we can multiply by χ(a, b, c, d). Indeed, multiplying A by χ(a, b, c, d) on the right gives
a matrix whose first row is (z, 0, a13, . . . , a1n), where we note that ℓ(z) < ℓ(a11). We may
then repeat this process until the (1, 1) entry of our matrix divides every element of the first
row, then apply the entire process again on the first column, giving us

f a′12 a′13 a′14 · · · a′1n
a′21 a′22 a′23 a′24 · · · a′2n
a′31 a′32 a′33 a′34 · · · a′3n
...

...
...

...
...

...
a′m1 a′m2 a′m3 a′m4 · · · a′mn


where the a′ij are not necessarily the same as aij, and f | a′1j, a′i1. Note that this process is
only guaranteed to terminate since the length of the element in the (1,1) position strictly
decreases every time. We can at this point use the Tj1(x), Ti1(x) matrices (i.e. column and
row addition) with the proper x ∈ R to put our matrix in the form

f 0 0 0 · · · 0
0 a′22 a′23 a′24 · · · a′2n
0 a′32 a′33 a′34 · · · a′3n
...

...
...

...
...

...
0 a′m2 a′m3 a′m4 · · · a′mn


These new a′ij have no particular relation to the old a′ij (I’ll continue using them as placeholder
variables for the rest of this proof). Adding the second row of our matrix to the first, and
repeating the process originally applied to the first row and column, we get a matrix of the
same form. Note that if we apply any of the elementary matrices from the above processes to
the sub-matrix (a′ij), then it does not affect divisibility by f . Thus, we get a situation where
f | a′2j. We can then do this again with all the rest of the rows in the matrix (switching each
of them to be the second row first), again knowing this process will terminate by the strict
decreasing of ℓ(f). Note that since each new f divides the previous one, this results in a
matrix of the above form where f | a′ij. We can then apply the same process as above to the
sub-matrix (aij)

′. Note that this, again, will not affect divisibility by f , so we get a matrix
of the form 

d1 0 0 0 · · · 0
0 d2 0 0 · · · 0
0 0 a′33 a′34 · · · a′3n
...

...
...

...
...

...
0 0 a′m3 a′m4 · · · a′mn


Repeating this process continually to each new, smaller, sub-matrix, we get the desired
result.

The above proof is still quite dense and hard to follow, as if I had gone through and justified
every little detail it would’ve run for far too many pages. It’s worth going through and
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proving any of the details which are unclear to you, or potentially running the algorithm
yourself ([Jac09] has some practice problems if you really have too much time on your hands).

We call form of the matrix in Theorem 4.5.1 the normal form of the matrix, and the di its
invariant factors. Of course, we have yet to prove that any of these things are unique. To
do this, we’ll need a pair of definitions.

Definition 4.5.3. Let A ∈ Mm,n(R), where R is any ring. If r ≤ m,n, then an r-rowed
minor of A is the determinant of a sub-matrix of A given by only including elements from r
rows and r columns from A. We say that A is of rank r if either

1. A has a non-zero r = min(m,n)-rowed minor.

2. r < min(m,n), A has a non-zero r-rowed minor, and A has no non-zero (r + 1)-rowed
minors.

Note. These are just generalizations of the same concepts from linear algebra. Also, the
recursive formula for the determinant implies that if A has rank r, then it has a non-zero
(r − k)-rowed minor for 0 ≤ k < r, and all (r + k)-rowed minors are zero for k ≥ 1 (indeed,
this is required for each matrix to have a unique rank).

Theorem 4.5.4. Suppose A ∈ Mm,n(R) is of rank r, where R is a PID. Then any normal
form of A will have r invariant factors d1, . . . , dn. Furthermore, if ∆i is a GCD of all the
i-rowed minors of A, then the di differ by unit multipliers from

d1 = ∆1 d2 = ∆2∆
−1
1 · · · dr = ∆r∆

−1
r−1

Proof. Let Q ∈Mm(R), P ∈Mn(R) be invertible. Note that

(QA)ij =
n∑
k=1

qikakj

Thus, any r-rowed minor of QA is a linear combination of r-rowed minors of A, making the
rank of QA at most that of A and the ∆i of QA an element which divides that of A. A
similar result holds for AP , so it follows that QAP is at most of rank r and has minor GCDs
dividing those of A. In particular, by Theorem 4.5.1, we can choose Q,P such that QAP is in
normal form. But of course the same argument would apply to transforming QAP to A using
Q−1, P−1, so it follows that the ranks of QAP and A are the same, as are their minor GCDs
(up to unit multipliers). Since ∆i | ∆i+1 (by the recursive formula for the determinant), the
desired result follows.

Again, I cut some corners here in the proof for the sake of my sanity and the readability of
the text. If there are any assertions which don’t seem clearly true to you, take the time to
work through them until they are.

The most important application of this uniqueness is in the following corollary.

Corollary 4.5.4.1. Two matrices are similar if and only if they have the same invariant
factors/normal forms (up to unit multipliers of the invariant factors).

92



CHAPTER 4. MODULES 4.6. STRUCTURE THEOREM

Finally, let’s clean up a pair of loose ends. I’ll first answer a question that may have popped
into your head.

Wouldn’t this imply that all matrices are diagonalizable?

The answer is, of course, no. Suppose A is our matrix, and P,Q invertible matrices such that
B = QAP−1 is in normal form. The matrix is diagonalizable only if we can choose Q = P .
Indeed, otherwise when interpreting the action of our matrix A using B, we’d have to use
different bases for the input and output. This isn’t bad per se, but it’s not diagonalization.

Second, I’ll fulfill a promise I made before and prove the following.

Proposition 4.5.5. Bézout’s identity holds in any PID.

Proof. Suppose R is a PID, and a, b ∈ R. Then there exists some c ∈ R such that (a, b) = (c).
Since c | a, b, we conclude that c divides any GCD of a, b. Thus, any GCD d of a, b is in
(c) = (a, b), and hence there exist x, y ∈ R such that ax+ by = d.

4.6 Structure Theorem

I’ll come clean with you here, the normal form of a matrix is not (at least in my experience)
particularly useful to you in most situations. We proved it instead in service of the following
theorem of utmost importance and utility (after a quick definition).

Theorem 4.6.1 (Structure Theorem for Finitely Generated Modules Over a PID). Suppose
M ̸= 0 is a finitely generated module over a PID R. Then there exist elements d1, . . . , dr ∈ R
such that

1. M ∼= R/(d1)⊕R/(d2)⊕ · · · ⊕R/(dr)

2. (d1) ⊃ (d2) ⊃ · · · ⊃ (dr)

Proof. Suppose v1, . . . , vn is a set of generators for M . We can define a homomorphism
φ : Rn → M by φ : ei 7→ vi. This homomorphism is clearly surjective, so M ∼= Rn/ ker(φ).
By Theorem 4.4.1, ker(φ) is a free submodule of Rn of rank m ≤ n. Let u1, . . . , um be a
basis for ker(φ), and let A ∈Mm,n(R) be the relations matrix between this and the standard
basis. By Theorem 4.5.1, there exist two invertible matrices P ∈ Mn(R), Q ∈ Mm(R) such
that QAP−1 is in normal form. Define

e′i =
n∑
j=1

pijej

u′i =
m∑
j=1

qijuj

Then by our observations in section 4.4, {e′i}ni=1 is another basis for R
n, {u′i}mi=1 another basis

for ker(φ) (the fact that this is a basis and not just a set of generators follows from Q being
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invertible), and QAP−1 is the relations matrix between them. That is, allowing the abuse
of notation that zeroes on the diagonal (or diagonals for rows past m) are still counted as
invariant factors of A, and denoted said invariant factors d1, . . . , dn, then

u′i = die
′
i

Using another notational trick here that u′i = 0 for i > m. But of course, we can also regard
Rn as Re′1⊕Re′2⊕· · ·⊕Re′n. In this view, it’s then clear that ker(φ) is (d1)⊕(d2)⊕· · ·⊕(dn),
and hence Rn/ ker(φ) ∼= R/(d1)⊕R/(d2)⊕ · · ·R/(dn). By Theorem 4.5.1, and the fact that
everything divides zero, we know that d1 | d2 | · · · | dn, and hence (d1) ⊃ (d2) ⊃ · · · ⊃
(dn).

Note. I’ve again, for the sake of my sanity, skipped over some technical details in this proof.
[Jac09]’s proof, although admittedly of a slightly different variant of this theorem, goes into
all those excruciating details if you really want them. They mostly amount to justifying
treating changes of basis flippantly.

Of course, it’d be really nice to have some sort of uniqueness on this theorem. It turns out
this does exist, and we’ll spend the remainder of this section (mostly) building up to it.
Before we do that, I’d like to present a slightly different form of the structure theorem, the
one you might’ve seen if you looked in [Jac09].

Corollary 4.6.1.1. Suppose M ̸= 0 is a finitely generated module over a PID R. Then there
exist elements v1, . . . , vr ∈M such that

1. M ∼= Rv1 ⊕Rv2 ⊕ · · · ⊕Rvr

2. ann(v1) ⊃ ann(v2) ⊃ · · · ⊃ ann(vr)

There’s a quick question to be answered here before we do the proof, namely what is ann?.
Simply put, if U ⊂M is a subset of a module M , then

ann(U) = {r ∈ R | ∀u ∈ U, ru = 0}

A quick check shows that these annihilators, as they’re called, are always ideals in R. Anyway,
on to the proof.

Proof. Consider the isomorphism φ : R/(d1)⊕R/(d2)⊕· · ·⊕R/(dr)→M from the structure
theorem. Define vi = φ(ei). Then clearly

M ∼= Rv1 ⊕ · · · ⊕Rvr

and ann(vi) = (di), giving the desired result.

The main thing we’re going to focus on here is not annihilators, but instead a related concept.

Definition 4.6.2. Let M be a module. An element v ∈ M is called torsion if ann(v) ̸= 0.
The torsion submodule of M is the set of all torsion elements of M , and is denoted M tor. If
M =M tor, we call M a torsion module.
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As the name would suggest, the torsion submodule is in fact always a submodule. In order
to understand the structure of modules further, we’re going to have to work a bit more with
it.

Theorem 4.6.3. Suppose M is a finitely generated module over a PID R. Then M is the
direct sum of its torsion submodule and a free submodule.

Proof. By the above corollary of the structure theorem, we know that there exist elements
v1, . . . , vr ∈M such that

1. M ∼= Rv1 ⊕Rv2 ⊕ · · · ⊕Rvr

2. ann(v1) ⊃ ann(v2) ⊃ · · · ⊃ ann(vr)

In particular, we may assume that none of these elements are zero (or equivalently none of
them are annihilated by R), and that the first s are torsion while the rest are not. It is then
a quick verification that

M tor ∼= Rv1 ⊕ · · · ⊕Rvs
Rr−s ∼= Rvs+1 ⊕ · · · ⊕Rvr

completing the proof.

The free part of the above decomposition we understand the structure (and uniqueness) of
quite well, so we’re going to focus in on the torsion submodule.

Definition 4.6.4. Let p ∈ R be a prime and M an R-module. Then Mp ⊂ M is the
submodule of M composed of all v ∈M such that for some k ∈ N, pkv = 0.

Note. I’ll leave it to you to show that this is indeed always a submodule.

Lemma 4.6.5. If p1, . . . , pr ∈ R are distinct primes, then Mp1 , . . . ,Mpr are linearly inde-
pendent.

Proof. It suffices to show that Mp1 ∩ (Mp2 + · · · + Mpr) = ∅. To that end, suppose that
v ∈Mp1 ∩ (Mp2 + · · ·+Mpr) = ∅, say v = u2 + · · ·+ ur, where ui ∈Mpi . For each 2 ≤ i ≤ r,
let ki be the exponent required to annihilate ui, with k1 that exponent for v. By Bézout’s
identity, there exist x, y ∈ R such that xpk11 + ypk22 · · · pkrr = 1. Thus, we get

v = (xpk11 + ypk22 · · · pkrr )(u2 + · · ·+ ur) = xpk1v + ypk22 · · · pkrr (u2 + · · ·+ ur) = 0

as claimed.

Lemma 4.6.6. The following hold for any module M over a PID R.

1. If M = Rv, where ann(v) = (d) and d = gh such that GCD(g, h) = 1, then ∃u1, u2 ∈M
such that ann(u1) = (g), ann(u2) = h, and M ∼= Ru1 ⊕Ru2.

2. If M ∼= Ru1⊕Ru2, where ann(u1) = (g), ann(u2) = h, u1, u2 ∈M , and GCD(g, h) = 1,
then there exists v ∈M such that M ∼= Rv, where ann(v) = (gh).
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Proof. We prove these one by one.

1. Set u1 = hv, u2 = gv. Note that ru1 = 0 only if d | rh, which since GCD(g, h) = 1
is only possible if g | r. Thus, ann(u1) = (g), and similarly ann(u2) = (h). Finally,
we show that the desired isomorphism exists. Let x, y ∈ R be such that xg + yh = 1.
Then v = (xg+ yh)v = yu1 + xu2, so Rv = Ru1 +Ru2. Suppose u ∈ Ru1 ∩Ru2. Then
ann(u) ⊃ (g) + (h) = R, so u = 0. Thus, by Theorem 4.3.4, Rv ∼= Ru1 ⊕Ru2.

2. Set v = u1 + u2. Suppose that r ∈ ann(v). Then ru1 + ru2 = 0⇒ ru1 = −ru2. Thus,
h ∈ ann(ru1), so g, h | r. Since GCD(g, h) = 1, it follows that gh | r. Therefore,
ann(v) = (gh). Since M = Ru1 +Ru2, it suffices to show that Rv = Ru1 +Ru2, as we
already know the sum to be direct. Rv ⊂ Ru1+Ru2 is clear. Let a, b ∈ R be such that
ag + bh = 1. Then u1 = ahu1 = ah(v − u2) = ahv, so u1 ∈ Rv. Similarly, u2 ∈ Rv, so
Rv ⊃ Ru1 +Ru2.

Note. These results may look a little more intuitive in the following form.

1. If M = R/(d), where d = gh such that GCD(g, h) = 1, then M ∼= R/(g)⊕R/(h).

2. If M ∼= R/(g)⊕R/(h), where GCD(g, h) = 1, then M ∼= R/(gh).

Using these results, we can re-phrase part of the structure theorem in terms of primary
components.

Theorem 4.6.7. SupposeM is a finitely generated torsion module over a PID R. Then there
exist (possibly non-distinct) prime elements p1, . . . , pn ∈ R and exponents k1, . . . , kn ∈ N such
that

M ∼= R/(pk11 )⊕ · · · ⊕R/(pknn )

Proof. By the structure theorem, there exist d1, . . . , dr ∈ R such that

M ∼= R/(d1)⊕ · · · ⊕R/(dr)

The result follows by applying the first point of lemma 4.6.6 repeatedly to each of the terms
in the direct sum.

Note. If you look carefully, you can see that this proof actually gives us a procedure for
converting between the two forms of the structure theorem. To see it written out, one can
take a look at the corresponding section in [Jac09].

Note that, again, we can re-phrase this in the following way.

Corollary 4.6.7.1. Suppose M is a finitely generated torsion module over a PID R. Then
there exist (possibly non-distinct) prime elements p1, . . . , pn ∈ R, exponents k1, . . . , kn ∈ N,
and elements v1, . . . , vn ∈M such that ann(vi) = (pkii ) and

M ∼= Rv1 ⊕ · · · ⊕Rvn
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That’s not all either, we can actually derive a more surprising result using the following.

Lemma 4.6.8. Let M be a finitely generated torsion module over a PID R. Then there exist
finitely many primes p1, . . . , pn such that M ∼= Mp1 ⊕ · · · ⊕Mpn.

Proof. That there are only finitely many primes p ∈ R such that Mp ̸= 0 follows from
corollary 4.6.7.1, and that the sum is direct was proven in lemma 4.6.5.

Corollary 4.6.8.1. Suppose p ∈ R is a prime from the decomposition given by corollary
4.6.7.1. Then the direct sum of all Rvi such that p ∈ ann(vi) is isomorphic to Mp.

Is the above result useful? Not really for our purposes, but I just think it’s interesting.
Anyhow, we can now (finally) prove the invariance of the structure theorem.

Theorem 4.6.9. Let M ∼= Rv1 ⊕ · · ·Rvn, M ∼= Ru1 ⊕ · · · ⊕ Rum be two decompositions in
the form of Theorem 4.6.1. Then n = m and ann(vi) = ann(ui).

Proof. This proof follows that given in [Jac09]. We start by reducing to the case of M
being torsion. Indeed, we can group the terms in each decomposition by putting all the
elements with non-zero annihilators first. Then the direct sums of those elements are M tor,
and modding out by M tor we see that the remaining number of terms must be the same
for both. Thus, we may assume that M is torsion. In fact, consider the decomposition
given in corollary 4.6.7.1. Note that the ann(vi), ann(ui) uniquely determine the resulting
primary decomposition, and vice-versa. Thus, the above proof is equivalent to showing that
our primary decomposition is uniquely determined. Since we can group the factors in that
decomposition by base prime, and it’s clear that the primes given in lemma 4.6.8 are unique,
we can further assume that M = Mp, for some prime p. Now, after all of this let’s prove
the statement for the primary decomposition. Assume that ann(vi) = (pki), ann(ui) = (pfi).
Note that by assumption, ki ≤ ki+1 and fi ≤ fi+1. For any x ∈ N, let pxM = {pxv | v ∈M}.
Note that each pxM is a submodule, and M ⊃ pM ⊃ · · · ⊃ pknM ⊃ pkn+1M = 0. A
similar result holds using pfm . Define M (r) = prM/pr+1M . Note that any element of this
has the form prv + pr+1M , so ann(M (r)) = (p) (or R, but we’ll assume that prM ̸= 0 here).
Thus, M (r) with the same operations is also an R/(p) module. But since p is prime R/(p) is
maximal, so R/(p) is a field and hence M (r) is a finite-dimensional vector space over R/(p).
Note that the dimension of M (r) is the number of terms of the form px, with x > r, in
each decomposition. Thus, each must have an equal number of these terms, so n = m and
ki = fi.

Note that this proof also showed the uniqueness of our primary decomposition (which we
can extend to non-torsion modules by adding allowing pi = 0)! We call the ann(vi) invari-
ant factors ideals in a decomposition of the form corollary 4.6.1.1, and elementary divisor
ideals in the other case. The generating elements for these ideals are often called invariant
factors/elementary divisors We also get two final, quite useful results from all this.

Corollary 4.6.9.1. Suppose M,N are finitely generated modules over a PID R. Then they
are isomorphic if and only if they have the same invariant factor ideals/elementary divisor
ideals.
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This one should’ve been immediate, the second is less so.

Corollary 4.6.9.2. Let G be a finitely generated Abelian group. Then there exist some
pi, ei ∈ Z+ such that

G ∼= Z/pe11 Z× · · · × Z/penn Z

where each pi is a prime or zero such that peii . Furthermore, this decomposition is unique.

Proof. This is just the applying the structure theorem by regarding Abelian groups as Z-
modules, with the action of Z being defined by repeated addition.

Note. This is just an extension of our Theorem 2.8.11 from all the way back in chapter 2.
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Chapter 5

Free Commutative Modules

In this chapter, we assume that all rings are commutative.

5.1 Basic Results

This might be the simplest section in the book, it’s just establishing a couple of results.

Theorem 5.1.1. Every vector space is free, and any linearly independent set in a vector
space is contained in some basis of that vector space.

Proof. We start by proving that every vector space is free. Let V be a vector space over a
field F , and let Σ be the set of all finite linearly independent subsets of V . Note that this
has a partial order given by set inclusion, and that a maximal element of Σ is by definition
a basis for V . Thus, by Zorn’s lemma it suffices to show that every totally ordered subset
of Σ has an upper bound. Indeed, suppose that Ω ⊂ Σ is totally ordered. Y =

⋃
X∈ΩX is

linearly independent, and hence is the desired upper bound. But note also that we could’ve
restricted Σ to sets containing a particular linearly independent set, and gotten the same
result. Hence, we can for any linearly independent set find a basis containing it.

Note. This is an equivalent result to the statement that every vector space has a basis, which
is what we actually proved. It also turns out to be equivalent to the axiom of choice. If
that makes you uncomfortable, then I apologize in advance for your attempts to prove things
about vector spaces without bases.

If you want to see a more thorough proof specific to vector spaces, see [Rom07]. Since all of
our rings are assumed to be commutative, and all modules free, all of our modules have a
well-defined rank, which we’ll denote rankR(M).

Theorem 5.1.2 (Rank-Nullity Theorem). Let V,W be vector spaces over a field F , and
φ ∈ HomF (V,W ) a linear map. Then

rankF (V ) = rankF (ker(φ)) + rankF (Im(φ))
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Proof. Let {vi}i∈I be a basis for ker(φ), and {vj}j∈J an extension of that to a basis of V . We
claim that {vj +ker(φ)}j∈J\I is a basis for V/ ker(φ), which immediately implies the desired
result. That it is spanning is clear. Suppose there existed some αj ∈ F such that

0 + ker(φ) =
∑
j∈J\I

αj(vj + ker(φ))

Then in particular, there exists some u ∈ ker(φ) such that

0 =
∑
j∈J\I

αjvj + u

Furthermore, there exist unique αi ∈ F such that u =
∑

i∈I αivi. Thus, we get

0 =
∑
j∈J

αjvj ⇒ αj = 0

so the set linearly independent as claimed.

Corollary 5.1.2.1. Suppose V is a vector space over F with subspace U . Then

rankF (V ) = rankF (U) + rankF (V/U)

Proof. Apply Theorem 5.1.2 to the quotient map q : V → V/U .

Corollary 5.1.2.2. Suppose V is a vector space over F with subspace U . Then rankF (U) ≤
rankF (V ), and if rankF (V ) <∞ then rankF (V ) = rankF (U)⇒ V = U .

5.2 Dual Modules

This section is based on lecture notes taken from [Sil23], along with a similar section in
[Lan05]. Let’s start by defining our objects of study.

Definition 5.2.1. Let M be a module over a commutative ring R. The dual module of M ,

denoted
←−
M , is the R-module HomR(M,R). Elements of the dual module are called linear

functionals.

Dual modules aren’t so much interesting by themselves so much as in how they’re applied.
The rest of this section will be dedicated to establishing the basic facts about dual modules
to allows us to study these applications effectively.

Proposition 5.2.2. Let {Mi}i∈I be a collection of R-modules, M an R-module, and N ⊂M
a submodule. Then the following hold.

1. ←−−−−−−(⊕
i∈I

Mi

)
∼=

∏
i∈I

←−
Mi
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2. ←−−−
M/N ∼= {φ ∈

←−
M | φ|N = 0}

Proof. 1. It suffices to show that
←−−−−−−−−(⊕

i∈IMi

)
satisfies the universal property of direct

products. To that end, define πi :
←−−−−−−−−(⊕

i∈IMi

)
→
←−
Mi by the action of φ ∈

←−−−−−−−−(⊕
i∈IMi

)
on the first component in the direct sum. Let M ′ be some other R-module and fi ∈

HomR(N,
←−
Mi) be linear maps. Define f : M ′ →

←−−−−−−−−(⊕
i∈IMi

)
by f(v) acting on the ith

component of the direct sum in the same way as fi(v). Then it is clear that f is the
desired linear map, and that any other such map must also have the defining property
of f , making f unique.

2. This follows quickly by noting that any φ ∈
←−
M which is zero on N induces a linear

functional on M/N , and that any linear functional on M/N can be extended to M by
making it zero on N .

Corollary 5.2.2.1. The dual of any finite-rank free module is free.

Proof. This follows from point (1) of the above proposition as long as HomR(R,R) ∼= R. But
of course any φ ∈ HomR(R,R) is entirely defined by its action on 1 ∈ R, so this is clear.

Note. This result does not hold in general for the dual of infinite-rank free modules.

We can explore the connection between the ”freeness” of a module and its dual further by
introducing the concept of dual bases.

Definition 5.2.3. Let M be a free R-module with basis B = {vi}i∈I . The dual basis of B

is
←−
B = {←−vi}i∈I , where ←−vi ∈

←−
M is defined by

←−vi (vj) = δij

Note. The notation of ←−vi is perhaps a bit poor, as the exact definition of that functional
depends not only on vi but also the basis that it’s contained in.

Proposition 5.2.4. Let M be a free R-module with basis B = {vi}i∈I . Then
←−
B is linearly

independent in
←−
M .

Proof. Suppose that αi ∈ R are such that 0 =
∑

i∈I αi
←−vi . Then in particular, we get that

for any j ∈ I
0 =

∑
i∈I

αi
←−vi (vj) = αj

Thus, αj = 0 for all j ∈ I, and
←−
B is linearly independent.

Proposition 5.2.5. Let M be a free R-module of rank n ∈ N with basis B = {vi}i∈I . Then
←−
B spans

←−
M .
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Proof. Pick any φ ∈
←−
M , and let αi = φ(vi). We’ll show that φ =

∑n
i=1 αi

←−vi , completing the
proof. Indeed, pick any u =

∑n
i=1 βivi ∈M . Then( n∑

i=1

αi
←−vi

)
(u) =

n∑
i=1

n∑
j=1

αiβjδij =
n∑
i=1

αiβi =
n∑
i=1

βiφ(vi) = φ(u)

giving us the claimed equality.

Note. The above proof works only in the finite-rank case, and the result will often fail to
hold for infinite-rank modules!

Corollary 5.2.5.1. If M is a finite-rank R-module, then M ∼=
←−
M .

We can go even further than the dual module and look at the dual of the dual module, which

we call the double dual and denote
←−←−
M . This, it turns out, has a decent resemblance to the

original module M . More explicitly, like how we have the dual basis, we also have a double
dual basis, which is given by ←−←−vi (φ) = φ(vi)

I’ll leave it to the reader to show that this is, in fact, linearly independent, and is spanning
when M is finite-rank.

Note. In the double dual basis, unlike the dual basis, the double dual element depends only
on the original basis element, and is independent of the rest of the basis. Hence, the double

dual of any element is well-defined, giving us a natural linear inclusion ι : M →
←−←−
M by

ι(v) =
←−←−v .

We can also dualize1 the linear maps that go with modules.

Definition 5.2.6. Let M,N be R-modules and φ ∈ HomR(M,N) a linear map. The dual

map of φ, ←−φ ∈ HomR(
←−
N ,
←−
M), is the map defined by

(←−φ (ψ))(v) = ψ(φ(v))

for any ψ ∈
←−
N , v ∈M .

Again, I’ll leave it to you to show that this is, in fact, a well-defined linear map. There are
some other interesting properties of dual maps, which I’ll list below.

Proposition 5.2.7. Let M,N,L be R-modules and φ ∈ HomR(M,N), ψ ∈ HomR(N,L)
linear maps. Then

1.
←−−−
ψ ◦ φ =←−φ ◦

←−
ψ .

2. If A is the matrix of φ with respect to some pair of bases for M and N , then At is the
matrix of ←−φ with respect to the dual bases.

The proofs of these are tedious and not particularly enlightening, so I’ll leave it to the reader
to prove them if they wish (this is question 1 in homework 4 of [Sil23]).

1This notion of dualizing will be defined formally in chapter 7, and used heavily in the latter chapters of
Part IV.

102



CHAPTER 5. FREE COMMUTATIVE MODULES 5.3. TENSOR PRODUCTS

5.3 Pairings and Tensor Products

This section is based on a similar section in [Lan05], lectures from [Sil23], and lectures by
Kalle Karu.

Definition 5.3.1. LetM,N,L be R-modules. A bilinear map/pairing is a map φ :M×N →
L which is linear in each argument. We call a pairing non-degenerate if

1. ∀u ∈M , if ∀v ∈ N,φ(u, v) = 0 then u = 0.

2. ∀v ∈ N , if ∀u ∈M,φ(u, v) = 0 then v = 0.

Otherwise, we call a pairing degenerate. A pairing is called alternating if N =M and for all
v ∈M,φ(v, v) = 0.

Example 5.3.1. The evaluation map ψ :
←−
M ×M → R defined by ψ(φ, v) = φ(v) is bilinear.

That above example is not a one-off, and indeed indicates the strong relationship between
pairings and dual spaces. For example, we have the following result.

Proposition 5.3.2. Let M be an R-module and ψ the evaluation map from above. Let ψ′ be
the evaluation map for another R-module N . Let φ ∈ HomR(M,N). Then ←−φ is the unique

linear map such that for any γ ∈
←−
N , v ∈M

ψ′(γ, φ(v)) = ψ(←−φ (γ), v)

In fact, the above result allows us to define ”dual maps” in that manner for any non-
degenerate pairings.

Proposition 5.3.3. Let M,N be an R-modules, ψ :M ×N → R a non-degenerate pairing,
and φ ∈ EndR(N) a linear map. Define φ̃ ∈ EndR(M) by, for any u ∈M, v ∈ N

ψ(u, φ(v)) = ψ(φ̃(u), v)

This map is unique if well-defined.

This result isn’t important for our purposes, but does come up (along with related results)
quite a bit in functional analysis. If you’re interested in seeing it developed in an algebraic
context see [Sil23], or if you prefer analysis see [Fol99].

Our goal, for the rest of this section, will be to turn pairings into linear maps. That is, we’re
looking for modules satisfying the following universal property.

Definition 5.3.4. Let M,N be R-modules. A tensor product of M,N is an R-module L
equipped with a bilinear map ι : M × N → L satisfying the following universal property:
Given any R-module P and bilinear φ : M × N → P , there exists a unique linear map
φ̃ : L→ P such that the following diagram commutes.
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M ×N L

P

ι

φ
φ̃

Proposition 5.3.5. Suppose (L, ι), (P, γ) are two tensor products ofM,N . Then there exists
a unique isomorphism φ : L→ P such that φ ◦ ι = γ.

Proof. By the universal property of tensor products, there exists a unique homomorphism
φ : L→ P and unique homomorphism ψ : P → L making the following diagram commute.

M ×N L

P

ι

γ ψφ

Hence, the following diagram commutes

M ×N L

L

ι

ι ψ◦φ

as does this one

M ×N L

L

ι

ι IdL

But by the universal property, the homomorphism f : L → L making those two diagrams
commute is unique, so ψ ◦ φ = IdL. A similar proof shows that φ ◦ ψ = IdP , making φ
bijective, and the uniqueness of φ follows from the uniqueness in the universal property.

Of course, I have not yet proven to you that tensor products exist. I’ll do so now.

Proposition 5.3.6. Let M,N be R-modules. Then there exists a tensor product of M,N .

Proof. Start by defining the module F =
⊕

i∈M×N R as formal R-coefficient sums of elements
of M ×N . That is, we denote by (u, v) the element with zeroes everywhere except in the ith
position. Let H be the submodule of F generated by all expressions of the form

1. (u1 + u2, v)− (u1, v)− (u2, v)

2. (u, v1 + v2)− (u, v1)− (u, v2)

3. (xu, v)− x(u, v)

4. (u, xv)− x(u, v)
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where u1, u2, u ∈M, v1, v2, v ∈ N, x ∈ R (we’ll keep these variables for the rest of the proof).
We’ll show that L = F/H with bilinear map φ :M ×N → L given by φ(u, v) = [(u, v)] is a
tensor product. First, we show that φ is bilinear. Indeed, we get

φ(xu1 + u2, v) = [(xu1 + u2, v)] = x[(u1, v)] + [(u2, v)] = xφ(u1, v) + φ(u2, v)

φ(u, xv1 + v2) = [(u, xv1 + v2)] = x[(u, v1)] + [(u, v2)] = xφ(u, v1) + φ(u, v2)

as required. Next, we show that (L, φ) satisfy the required universal properties. Suppose
P is some other R-module, and ψ : M × N → P a bilinear map. We’d like to define
f : L → P by being linear with f([(u, v)]) = ψ(u, v) (note that any homomorphism making
the diagram commute must satisfy these properties, so f is unique if this is well-defined, and
that f by definition makes our diagram commute). We need only check that this is well-
defined. Indeed, we can see that this map would be inherited from the well-defined linear
map g : (u, v) 7→ ψ(u, v) from F to P as long as H ⊂ ker(g). To prove this, we just need to
check that g is zero on the generators of H. We’ll do so for generators of the type (1) and
(3), the other two are substantially similar.

g((u1 + u2, v)− (u1, v)− (u2, v)) = g((u1 + u2, v))− g((u1, v))− g((u2, v))
= ψ(u1 + u2, v)− ψ(u1, v)− ψ(u2, v) = 0

g((xu, v)− x(u, v)) = g((xu, v))− xg((u, v)) = ψ(xu, v)− xψ(u, v) = 0

Given that tensor products always exist and are unique, we generally refer to the tensor
product from the above proposition as the tensor product, and denote it M ⊗R N . We also
take the convention of denoting [(u, v)] in this space by u⊗R v. We will often times drop the
subscript R when the underlying ring is clear from context.

Proposition 5.3.7. Let M,N,P be R-modules. Then the following maps are canonical
isomorphisms (i.e. isomorphisms that play nice with the relevant universal properties).

1. The map M ⊗N → N ⊗M given by u⊗ v 7→ v ⊗ u.

2. The map R⊗M →M given by x⊗ v 7→ xu.

3. The map (M ⊗N)⊗ P →M ⊗ (N ⊗ P ) given by (u⊗ v)⊗ q 7→ u⊗ (v ⊗ q).

4. The map (M ⊕N)⊗ P → (M ⊗ P )⊕ (N ⊗ P ) given by (u, v)⊗ q 7→ (u⊗ q, v ⊗ q).

Proving this would be extremely tedious, so we won’t do so. The main thing to take out
of this is that the tensor product is, in a sense, commutative, associative, and distributive,
and R acts like a unit for the tensor product. The associativity suggests that we should be
able to take the tensor product of more than two modules, which is in fact the case using
multilinear maps!

Definition 5.3.8. Let {Mi}i∈I , N be R-modules. A multilinear map is a map f : ×i∈IMi →
N which is linear in each argument.
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The definition of the tensor product, at this point, is just an extension of the usual universal
property.

Definition 5.3.9. Let {Mi}i∈I be a collection of R-modules. A tensor product of the Mi

is an R-module N along with a multilinear map ι : ×i∈IMi → N satisfying the following
universal property: For any R-module P and multilinear map f : ×i∈I → P , there exists a
unique φ ∈ HomR(M,N) such that the following diagram commutes.

×i∈IMi N

P

ι

f φ

Like our previous definition, this tensor product always exists and is unique up to a unique
isomorphism. It also plays well with our previous definition in the way you’d expect, as

(M ⊗N)⊗ P ∼= M ⊗N ⊗ P ∼= M ⊗ (N ⊗ P )

where that middle term is the tensor product of M,N,P , and all the isomorphisms are
canonical as in proposition 5.3.7.

I’d like to mention one more thing before we move on to bases, namely that linear maps on
the underlying spaces naturally induce linear maps on the tensor product. Indeed, suppose
that M,N are R-modules and f : M → M, g : N → N endomorphisms. Then the map
f × g : M × N → M ⊗ N given by (u, v) 7→ f(u) ⊗ f(v) is bilinear, and hence induces an
endomorphism f ⊗ g :M ⊗N →M ⊗N which is given by (f ⊗ g)(u⊗ v) = f(u)⊗ g(v).

Now, on to bases. Our main result is the following.

Theorem 5.3.10. Suppose M,N are free R-modules with bases {ui}i∈I , {vj}j∈J . Then B =
{ui ⊗ vj | i ∈ I, j ∈ J} is a basis for M ⊗N .

Proof. First, we show that B is linearly independent. Indeed, suppose that
∑

i∈I
∑

j∈J αijui⊗
vj = 0, where αij ∈ R. Consider the bilinear map ←−ui × ←−vj given by (←−ui × ←−vj )(u, v) =
←−ui (u)←−vj (v). This induces a linear map ←−ui ⊗←−vj : M ⊗ N → R given by (←−ui ⊗←−vj )(u ⊗ v) =←−ui (u)←−vj (v). Applying this map to both sides of our expression, we get

0 = (←−ui ⊗←−vj )(0) = (←−ui ⊗←−vj )
( ∑
k∈I,ℓ∈J

αkℓuk ⊗ vℓ
)
=

∑
k∈I,ℓ∈J

αkℓ(
←−ui ⊗←−vj )(uk ⊗ vℓ)

=
∑

k∈I,ℓ∈J

αkℓ
←−ui (uk)←−vj (vℓ) =

∑
k∈I,ℓ∈J

αkℓδikδjℓ = αij

Thus, B is linearly independent. To check that B is spanning, we just need to show that any
element of the form u⊗ v can be reached. But indeed, there exist αi ∈ R, βj ∈ R such that

u =
∑
i∈I

αiui v =
∑
j∈J

βjvj
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so

u⊗ v =
∑

i∈I,j∈J

αiβjui ⊗ vj

as required.

Corollary 5.3.10.1. IfM,N are free R-modules, then rankR(M⊗N) = rankR(M) rankR(N)
(when this expression is well-defined).

Note. Both of these results extend in the obvious way to tensor products of more than two
modules.

Note. The second of these results shows that, in the case of finite-rank free modules, the
tensor product and direct sum are almost never isomorphic. Indeed, one can check that
rankR(M ⊕N) = rankR(M) + rankR(N).

Note. Non-free modules can be much nastier than this, with the tensor product actually
shrinking the modules. For example, Q⊗Z Z/nZ = 0 for any n ∈ N.

There’s one final concept I’d like to at least mention before we move on: the extension of
scalars. You may remember from a basic course in linear algebra that if we have a vector
space over R, there are no problems in suddenly treating it like it’s a vector space over C to
find eigenvalues. Formally, this amounts to moving from V to C⊗R V , and defining this new
space as a C vector space by always defining multiplication in the first argument. This same
trick will work with any field and subfield, for more details see [Sil23].

5.4 Symmetric and Antisymmetric Products

This section is based on lecture notes by [Sil23]. In it, we focus in on the action of permuta-
tions on tensor products.

Definition 5.4.1. Let M be an R-module, n ∈ N, and σ ∈ Sn. We define the action of σ
on

⊗n
k=1M by the rule

σ(v1 ⊗ v2 ⊗ · · · ⊗ vn) = vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n)

and linearity.

Note. This is essentially a map from Sn to EndR(M), with the ”action” of a permutation
being applying its corresponding endomorphism.

Definition 5.4.2. Let M be an R-module, n ∈ N. We call v ∈
⊗n

k=1M symmetric/even if,
for every σ ∈ Sn, σ(v) = v. We call it antisymmetric/odd if, for every σ ∈ Sn, σ(v) = sgn(σ)v.

Note. If 2 = 0 in our ring, then symmetric and antisymmetric are the same thing.
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For the rest of this, and the next, section, we will only care about (anti)symmetric vectors.
Indeed, if n ∈ N, we define the submodules of

⊗n
k=1M

Symn(M) =
{
v ∈

n⊗
k=1

M | ∀σ ∈ Sn, σ(v) = v
}

n∧
M =

{
v ∈

n⊗
k=1

M | ∀σ ∈ Sn, σ(v) = sgn(σ)v
}

That is, the submodules of even and odd vectors. The interesting note here is that if M is
free of finite rank, then we can explicitly construct a basis for these submodules.

Theorem 5.4.3. Suppose M is a free R-module of rank n ≥ 2, with basis {vi}ni=1. For any
k ∈ N, define the sets

B+
k =

{ ∑
σ∈Sk

σ(vi1 ⊗ · · · ⊗ vik) | {i1, · · · , ik} ⊂ [n]
}

B−
k =

{ ∑
σ∈Sk

sgn(σ)σ(vi1 ⊗ · · · ⊗ vik) | 1 ≤ i1 < i2 < · · · < ik ≤ n
}

where [n] = {1, 2, · · · , n}. Then Bp
k is a basis for Symk(M), and B−

k is a basis for
∧kM .

Proof. That these subsets are contained in their claimed submodules is clear. By induction
on Theorem 5.3.10, the following set is a basis for

⊗k
i=1M .

Bk =
{
vi1 ⊗ · · · ⊗ vik | i1, . . . , ik ∈ [n]

}
It follows from this that B+

k , B
−
k are linearly independent. Indeed, one can note that the

σ(vi1 ⊗ · · · ⊗ vik) are always linearly independent for any choice of {i1, · · · , ik} ⊂ [n], and
that each choice of {i1, · · · , ik} ⊂ [n] leads to a different set of basis vectors from applying
σ. Next, we show that B+

k , B
−
k are spanning. First, we’ll look at B+

k . Pick any v =∑
{i1,...,ik}⊂[n] αi1,...,ikvi1⊗· · ·⊗vik in Symk(M), where αi1,...,ik ∈ R. For any {i1, . . . , ik} ⊂ [n],

the symmetry condition requires that

αi1,...,ik = ασ(i1),...,σ(ik)

for each σ ∈ Sk. Thus, we get

v =
∑

{i1,...,ik}⊂[n]

∑
σ∈Sk

αi1,...,ikσ(vi1 ⊗ · · · ⊗ vik)

as required. Second, we look at B−
k . Pick any {i1, . . . , ik} ⊂ [n]. Note that the antisymmetry

condition forces
αi1,...,ik = sgn(σ)ασ(i1),...,σ(ik)

Assume, without loss of generality, that i1 = i2. Pick any ordering of i1, . . . , ik, and let σ be
the permutation which results in that ordering. Note that switching the position of i1 and i2
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in this order does nothing, the two corresponding elements of B will be the same, but does
flip the sign of the permutation. Thus, we get these two terms cancelling, resulting in the
coefficients for all such basis elements being zero. Therefore, we may assume without loss
of generality that i1, . . . , ik are all distinct. Thus, we can assume (by applying the correct
permutation and subsequent signs to the coefficients) that i1 < i2 < · · · < in. We therefore
get

v =
∑

1≤i1<i2<···<ik≤n

∑
σ∈Sk

αi1,...,ik sgn(σ)σ(vi1 ⊗ · · · ⊗ vik)

as required.

Corollary 5.4.3.1. Suppose M is a free module of rank n ≥ 2, and k ∈ N. Then

1. rankR(Sym
k(M)) = |{k-multisets of [n]}|

2. rankR(
∧kM) =

(
n
k

)
where we denote that

(
n
k

)
= 0 if k > n.

The second result in that corollary is the most interesting, as it demonstrates a pair of very
interesting behaviours.

1.
(
3
2

)
= 3

2.
(
n
n

)
= 1

The first of these actually relates to the cross product, and more generally exterior products.
For more details on this, see [Rom07]. The second, when combined with the tensor product
of linear operators, gives us another way to approach determinants. Indeed, suppose that
M is a rank n free R-module, and T ∈ EndR(M). If we were to represent T in matrix form
relative to some basis, say this matrix is A, we could then calculate the determinant of that
matrix to determine if T is invertible. But of course a change of basis amounts to changing
our matrix to QAQ−1, for some invertible matrix Q. This suggests that there should be some
way of defining the determinant of T without appealing to bases, which is in fact the case.

Proposition 5.4.4. Suppose M is a free R-module of rank n, and k ∈ N. Then for any
T ∈ EndR(M),

⊗k
i=1 T ∈ EndR(

⊗k
i=1M) restricts to linear maps on the symmetric and

antisymmetric submodules. We denote these restricted maps by Symk(T ) and
∧k T .

Proof. It suffices to show that these restrictions map basis elements to elements of the sub-
module. Indeed, suppose that {vi}ni=1 is a basis for M . Pick any {i1, . . . , ik} ⊂ [n]. Then by
definition ( k⊗

j=1

T
)( ∑

σ∈Sk

σ(vi1 ⊗ · · · ⊗ vik)
)
=

∑
σ∈Sk

T (viσ(1))⊗ · · · ⊗ T (viσ(k))

=
∑
σ∈Sk

σ(T (vi1)⊗ · · · ⊗ T (vik))
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and ( k⊗
j=1

T
)( ∑

σ∈Sk

sgn(σ)σ(vi1 ⊗ · · · ⊗ vik)
)
=

∑
σ∈Sk

sgn(σ)T (viσ(1))⊗ · · · ⊗ T (viσ(k))

=
∑
σ∈Sk

sgn(σ)σ(T (vi1)⊗ · · · ⊗ T (vik))

giving the desired results.

Definition 5.4.5. Let M be an R-module, n = rankR(M), and T ∈ EndR(M). The deter-
minant of T , denoted det(T ), is the scalar multiple that

∧n T is in
∧nM .

Note. This is well-defined since rankR(
∧nM) = 1, so every linear map on that space is just

scalar multiplication.

Theorem 5.4.6. Let M be an R-module, n = rankR(M), B = {vi}ni=1 a basis for M ,
T ∈ EndR(M), and A ∈Mn(R) the matrix for T relative to B. Then det(T ) = det(A).

Proof. By Theorem 5.4.3, one of the choices for the basis vector of
∧nM is∑

σ∈Sn

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n)

Writing A = (aij), we know by definition that

T (vj) =
n∑
i=1

aijvi

and
det(A) =

∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)

Finally, we get( n∧
T
)( ∑

σ∈Sn

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n)
)
=

∑
σ∈Sn

sgn(σ)(Tvσ(1))⊗ · · · ⊗ (Tvσ(n))

=
∑
σ∈Sn

sgn(σ)
( n∑
i=1

aiσ(1)vi

)
⊗ · · · ⊗ (

n∑
i=1

aiσ(n)vi

)
=

∑
σ∈Sn

sgn(σ)
n∑

i1=1

· · ·
n∑

in=1

ai1σ(1) · · · ainσ(n)vi1 ⊗ · · · ⊗ vin

=
∑
σ∈Sn

sgn(σ)
∑
ω∈Sn

aω(1)σ(1) · · · aω(n)σ(n)vω(1) ⊗ · · · ⊗ vω(n)

=
∑
ω∈Sn

sgn(ω)
( ∑
σ∈Sn

sgn(ω) sgn(σ)aω(1)σ(1) · · · aω(n)σ(n)
)
vω(1) ⊗ · · · ⊗ vω(n)
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But since this is a multiple of
∑

ω∈Sn sgn(ω)vω(1) ⊗ · · · ⊗ vω(n), it follows that∑
σ∈Sn

sgn(ω) sgn(σ)aω(1)σ(1) · · · aω(n)σ(n)

is independent of ω. Thus, we can say that∑
σ∈Sn

sgn(ω) sgn(σ)aω(1)σ(1) · · · aω(n)σ(n) =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)

Thus, we conclude∑
ω∈Sn

sgn(ω)
( ∑
σ∈Sn

sgn(ω) sgn(σ)aω(1)σ(1) · · · aω(n)σ(n)
)
vω(1) ⊗ · · · ⊗ vω(n)

=
( ∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n)
) ∑
ω∈Sn

sgn(ω)vω(1) ⊗ · · · ⊗ vω(n)

giving us

det(T ) =
∑
σ∈Sn

sgn(σ)a1σ(1) · · · anσ(n) = det(A)

as claimed.

There you go, a completely basis-free way of defining the determinant! Of course, we have
one final (obvious) result that this implies.

Corollary 5.4.6.1. Let M be an R-module, n = rankR(M), and T ∈ EndR(M). Then T is
invertible if and only if det(T ) is a unit in R.

5.5 Rational and Jordan Canonical Form

This section is based on similar ones from [Jac09] and [Sil23]. For this section, fix F to be
a field, V an n-dimensional F -vector space, and T ∈ EndF (V ). We first note that V can be
regarded as an F [λ] module, with scalar multiplication given by λv = Tv. We wish to study
the structure of V as an F [λ] module. It’s clear that V is finitely generated over F [λ]. Our
first non-trivial result is the following.

Proposition 5.5.1. V is a torsion F [λ] module.

Proof. Pick any non-zero v ∈ V . Then since dimF (V ) = n, there exists some 1 ≤ m ≤ n
such that λmv ∈ SpanF (v, λv, . . . , λ

m−1v). In particular then, there exist ai ∈ F such that

λmv =
m−1∑
k=0

akλ
kv

Thus, setting f(λ) = λm −
∑m−1

k=0 akλ
k, we get f(λ)v = 0 and f ̸= 0.
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Let {ui}ni=1 be a basis for V as an F -vector space. We get a natural homomorphism of F [λ]-
modules q : F [λ]n → V given by q : ei 7→ ui. This map is surjective by construction, so we
get that as F [λ]-modules

V ∼= F [λ]/ ker(q)

Our next task then will be to study the structure of ker(q). Note that F [λ] is a PID, so
ker(q) is free. Thus, we search for a basis of ker(q).

Proposition 5.5.2. Let A = (aij) ∈Mn(F ) be the matrix of T relative to the basis {ui}ni=1.
Then the set

B =
{
vi = λei −

n∑
j=1

ajiej | 1 ≤ i ≤ n
}

is a basis for ker(q).

Proof. That each of these is in the kernel of q is clear, as by definition in V

λui =
n∑
j=1

ajiuj

Thus, we just need to check that these are spanning and linearly independent. Note that

λei = vi +
n∑
j=1

ajiej

Thus, any element of the form
∑n

i=1 fi(λ)ei, where fi ∈ F [λ], can be written in the form

n∑
i=1

gi(λ)vi +
n∑
i=1

biei

for some gi ∈ F [λ], bi ∈ F . If this element is in ker(q), then since each vi ∈ ker(q) we must get∑n
i=1 biei ∈ ker(q)⇒

∑n
i=1 biui = 0⇒ bi = 0. Thus, B is spanning. For linear independence,

suppose that
∑n

i=1 gi(λ)vi = 0. Then we’d get

n∑
i=1

(
gi(λ)λei −

n∑
j=1

ajigi(λ)ej

)
= 0⇒

n∑
i=1

(
gi(λ)λ−

n∑
j=1

aijgj(λ)
)
ei = 0

This, of course, implies that

gi(λ)λ =
n∑
j=1

aijgj(λ)

Suppose, without loss of generality, that gi ̸= 0 is a polynomial gj of maximal degree. Then
this relation is clearly impossible unless gi = 0. Thus, all the gi = 0, making B linearly
independent.
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We can note something further from this, namely that

vi = (λ Idn−A)ei

That is, λ Idn−A is the matrix form of an isomorphism from F [λ]n onto ker(q) relative to
the bases {ei}ni=1, {vi}ni=1. But of course λ Idn−A ∈ Mn(F [λ]), and F [λ] is a PID. Thus,
we can find some other pair of bases {e′i}ni=1, {v′i}ni=1 for F [λ]

n, ker(q) and invertible matrices
P,Q ∈Mn(F [λ]) such that

1. Pe′i =
∑n

j=1 pjiej.

2. Qv′i =
∑n

j=1 qjivj.

3. λ Idn−A = QDP−1, where D is a matrix in normal form.

In particular, since F is a field we can choose the polynomials d1, . . . , dn on the diagonal in
D to all be monic if they are non-zero.

We can actually say more about this ”diagonalization” by looking at the characteristic poly-
nomial.

Definition 5.5.3. Let A ∈Mn(F ). The characteristic polynomial of A, denoted fA ∈ F [λ],
is det(λ Idn−A).

We can note here that fA and det(PDQ) differ only by units, as P,Q are invertible. Further-
more, det(D) = d1(λ) · · · dn(λ). Thus, since F [λ] is a UFD, the di are uniquely determined
by the characteristic polynomial. Furthermore, since fA ̸= 0, it also follows from this that
none of the di are zero.

This is where we drag the structure theorem back into everything. Remember, we have by
construction that

v′i = di(λ)e
′
i

Furthermore, by the proof of the structure theorem, we then get that as F [λ]-modules

V ∼= F [λ]/(d1(λ))⊕ · · · ⊕ F [λ]/(dn(λ))

There’s another way of looking at this which may be more useful. We note that the image
of each e′i in M is u′i =

∑n
j=1 pjiui. Thus, we get

V ∼= F [λ]u′1 ⊕ · · · ⊕ F [λ]u′n

where annF [λ](u
′
i) = (di(λ)).

Note. It is very important to notice here that this notation is allowing for di = 0, in which
case F [λ]u′i

∼= 0.

Note what this implies : the linear transformation T acts on each component of this direct
sum separately. Thus, considering these F [λ]u′i as F -subspaces of V , we get a matrix for T
in ”block diagonal” form, with one block for each non-zero F [λ]u′i. The final thing we wish
to do is study these blocks. To that end, we have the following proposition.
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Proposition 5.5.4. Let A = (aij) ∈Mn(F ) be the matrix of T relative to the basis {ui}ni=1,
and suppose that A only has one non-unit invariant factor, call it dn(λ) and suppose it is of
degree m ≥ 1. Then V ∼= F [λ]u′n as F [λ]-modules, m = n, B = {u′n, λu′n, . . . , λm−1u′n} is a
basis for V as an F -vector space, and relative to this basis T has the matrix form

0 0 · · · 0 αn
1 0 · · · 0 αn−1

0 1 · · · 0 αn−2
...

...
. . .

...
...

0 0 · · · 1 α1


where dn(λ) = λm −

∑m
i=1 αiλ

n−i.

Proof. First, we show that B is spanning. Pick any v ∈ V . Since F [λ]u′n = V , there exists
some polynomial g(λ) ∈ F [λ] such that g(λ)u′n = v. Thus, it suffices to show that λmu′n ∈
SpanF (B). Indeed, we know that dn(λ)u

′
n = 0. Thus, setting dn(λ) = λm−

∑m
i=1 αiλ

m−i, we
get

λmu′n =
m∑
i=1

αiλ
m−iu′n

as required. Note that n = m would then immediately imply that B is a basis. We cannot
have m < n as the dimension of V is at most m. Suppose m > n. Then B would be linearly
dependent, so there would exist bi ∈ F such that

∑m
i=1 biλ

i−1u′n = 0. But then a polynomial
of degree m− 1 would annihilate u′n, so annF [λ](u

′
n) ̸= (dn). Thus, we cannot have m > n, so

m = n as required. Finally, we consider the form of the matrix for T relative to the basis B.
If k < m− 1, we get

T (λku′n) = λk+1u′n

If k = m− 1, we instead get

T (λku′n) = λmu′n =
m∑
i=1

αiλ
n−iu′n

Thus, our matrix is of the form 
0 0 · · · 0 αn
1 0 · · · 0 αn−1

0 1 · · · 0 αn−2
...

...
. . .

...
...

0 0 · · · 1 α1


as claimed.

A matrix of the above form is often called the companion matrix for the polynomial dn(λ).
Finally, we can bring these observations all together into the following.
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Theorem 5.5.5. Suppose V is an F -vector space of finite dimension n, and T ∈ EndF (V ).
Then there exists a basis in which the matrix for T is in block diagonal form

D1

D2

. . .

Dm


where each Di is the companion matrix for a polynomial di ∈ F [λ] of degree at least one,
m ≤ n, and d1 | d2 | · · · | dm.

If A is the matrix for T in any other basis, then we call this block diagonal form the ra-
tional canonical form of A. Note that the di are uniquely determined by the characteristic
polynomial of the matrix, which leads to the following result.

Theorem 5.5.6. Suppose A,B ∈ Mn(F ). Then they differ by a change of basis, i.e. there
exists an invertible Q ∈ Mn(F ) such that B = QAQ−1, if and only if they have the same
rational canonical form.

This is all quite dense, so I don’t blame you if you’re having trouble following everything at
this point. I did as well when I first did this, and even now I had to refer to [Jac09] frequently
to remember how all this worked. I ask that you stick with me just a bit longer!

The astute amongst you might have noticed that we only used one form of the structure
theorem above, namely the invariant factors formulation, and asked whether we can get a
similar result using the elementary divisors formulation. The answer turns out to be yes, but
only in some specific circumstances. To start off, we can note that since the invariant factors of
λ Idn−A (our matrix from way back when in this construction) were uniquely determined by
the characteristic polynomial, so are the elementary divisors. Call these elementary divisors
p1(λ)

k
1, . . . , pm(λ)

km , and assume that none of them are units (note that since none of the
invariant factors are zero, none of the elementary divisors are zero either). Then by the
structure theorem, there exist elements u′1, . . . , u

′
m ∈ V such that annF [λ](u

′
i) = (pkii ), and as

F [λ]-modules

V ∼= F [λ]u′1 ⊕ · · · ⊕ F [λ]u′m

Again, this gives us that the action of T on V splits over this direct sum, giving a block
diagonal matrix, and we study the structure of each of these blocks. In general, this is not
particularly interesting, but if pi is of the form pi(λ) = λ − x, where x ∈ F , we do get an
interesting result.

Proposition 5.5.7. Let A = (aij) ∈Mn(F ) be the matrix of T relative to the basis {ui}ni=1,
and suppose that A only has one non-unit elementary factor, call it p1(λ)

k1 and suppose p1 is
of degree 1. Then V ∼= F [λ]u′1 as F [λ]-modules, k1 = n, B = {p1(λ)k1−1u′1, p1(λ)

k1−2u′1, . . . , u
′
1}
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is a basis for V as an F -vector space, and relative to this basis T has the matrix form

x1 1 0 0 · · · 0 0 0
0 x1 1 0 · · · 0 0
0 0 x1 1 · · · 0 0
...

...
. . . . . . . . .

...
...

0 0 · · · . . . . . . 1 0

0 0 · · · · · · . . . x1 1
0 0 · · · · · · · · · 0 x1


where p1(λ) = λ− x1.

Proof. First, we show that B is spanning. Pick any v ∈ V . Since F [λ]u′1 = V , there
exists some polynomial g(λ) ∈ F [λ] such that g(λ)u′1 = v. Thus, it suffices to show that
p1(λ)

k1u′1 ∈ SpanF (B). Indeed, we know that p1(λ)
k1u′1 = 0. Thus, setting p1(λ) = λ − x1,

and p1(λ)
k1 = λk1 −

∑k1
i=1 αiλ

k1−i, we get

λk1u′1 =

k1∑
i=1

αiλ
ki−iu′1

as required. Note that n = k1 would then immediately imply that B is a basis. We cannot
have k1 < n as the dimension of V is at most k1. Suppose k1 > n. Then B would be linearly
dependent, so there would exist bi ∈ F such that

∑k1
i=1 biλ

i−1u′1 = 0. But then a polynomial
of degree k1 − 1 would annihilate u′1, so annF [λ](u

′
1) ̸= (pk11 ). Thus, we cannot have k1 > n,

so k1 = n as required. Finally, we consider the form of the matrix for T relative to the basis
B. If k < k1 − 1, we get

T ((λ− x1)ku′1) = λ(λ− x1)ku′1 = (λ− x1)k+1u′1 + x1(λ− x1)ku′1

If k = k1 − 1, we instead get

T ((λ− x1)ku′1) = λ(λ− x1)ku′1 = (λ− x1)k1u′1 + x1(λ− x1)k1−1u′1 = x1(λ− x1)k1−1u′1

Thus, our matrix is of the form

x1 1 0 0 · · · 0 0 0
0 x1 1 0 · · · 0 0
0 0 x1 1 · · · 0 0
...

...
. . . . . . . . .

...
...

0 0 · · · . . . . . . 1 0

0 0 · · · · · · . . . x1 1
0 0 · · · · · · · · · 0 x1


as claimed.

116



CHAPTER 5. FREE COMMUTATIVE MODULES 5.5. RATIONAL/JORDAN FORMS

Note. The characteristic polynomial of matrix representing a linear map is independent of
the basis chosen. Thus, we can refer to the characteristic polynomial of the linear map T ,
which we denote fT (λ) ∈ F [λ].
We call matrices of the above form a Jordan block for the elementary factor λ− x1. Again,
we can bring all these observations together in the following theorem.

Theorem 5.5.8. Suppose V is an F -vector space of finite dimension n, and T ∈ EndF (V )
is a linear map whose characteristic polynomial factors into a product of the form fT (λ) =∏m

i=1(λ−xi)ki in F [λ]. Then there exists a basis in which the matrix for T is in block diagonal
form 

J1
J2

. . .

Jr


where each Ji is a Jordan block for some xi.

Note. The above theorem allows, and in fact it is quite common, for one xi to correspond
to multiple Jordan blocks. It also requires that every xi have at least one Jordan block,
since each xi appears at least once as an elementary factor (this follows from the structure
theorem).

The trick to this, of course, is that it doesn’t always work. To guarantee that it does, we
can insist that F be algebraically complete, that is that every polynomial in F [λ] of degree
at least one factors into a product of linear factors in F [λ] (or equivalently that every such
polynomial has a root in F [λ]).

Putting a matrix into this form via a change of basis is called putting it into Jordan canonical
form. We again get a uniqueness result out of this, assuming that F is algebraically complete.

Theorem 5.5.9. Suppose A,B ∈ Mn(F ), where F is algebraically complete. Then they
differ by a change of basis, i.e. there exists an invertible Q ∈Mn(F ) such that B = QAQ−1,
if and only if they have the same Jordan canonical form (up to the order of Jordan blocks).

There’s more to talk about with Jordan canonical form, as it has a strong connection to the
notion of eigenvalues and eigenspaces. To start off, we generalize these notions.

Definition 5.5.10. Let V be an F -vector space, T ∈ EndF (V ). We call λ ∈ F a generalized
eigenvalue of T if there exists some non-zero v ∈ V and n ∈ N such that

(λ− T )nv = 0

In such a case, we call v a generalized eigenvector.

The thing about this definition is that, in a way, I haven’t really defined much new. Indeed,
we get the following.

Proposition 5.5.11. Let V be an F -vector space, T ∈ EndF (V ). Then λ ∈ F a generalized
eigenvalue of T if and only if it is an eigenvalue of T .
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Proof. That every eigenvalue is a generalized eigenvalue is immediate. Now, suppose that
λ ∈ F is a generalized eigenvalue. Let n ∈ N be the minimal number such that there exists
non-zero v ∈ V such that (λ − T )nv = 0. If n = 1 then we’re done. Otherwise, we’d get
that (λ− T )n−1v ̸= 0 and (λ− T )(λ− T )n−1v = 0, contradicting the minimality of n. Thus,
n = 1, completing the proof.

Note. Despite this result, generalized eigenvectors need not be eigenvectors.

Definition 5.5.12. Let V be an F -vector space, T ∈ EndF (V ), and λ ∈ F an eigenvalue.
We denote by Vλ the subspace of V consisting of 0 and all the generalized eigenvectors of T
with generalized eigenvalue λ.

I’ll leave it to the reader to show that Vλ is indeed a subspace, again it is not too difficult to
do. It’s at this point though that we can start to connect things to Jordan canonical form.
Indeed, notice that every vector in the basis given to us by Jordan canonical form consists
entirely of generalized eigenvalues, and that those with different corresponding eigenvalues
correspond to different blocks! We only need one more result than before our final conclusion.

Proposition 5.5.13. Let V be an F -vector space, T ∈ EndF (V ). Every generalized eigen-
vector of T has a unique corresponding generalized eigenvalue.

Proof. Suppose λ ∈ F is a generalized eigenvalue of T . It suffices to show that (µ − T )
is invertible for any generalized eigenvalue µ ̸= λ on Vµ. Indeed, suppose that weren’t the
case. Then there would exist some non-zero u ∈ Vµ and n ∈ N such that Tu = µu and
(λ− T )nu = 0. But (λ− T )nu = (λ− µ)nu, so this implies that λ = µ.

Now, we bring everything together.

Theorem 5.5.14. Let V be a finite-dimensional F -vector space, where F is algebraically
complete, and T ∈ EndF (V ) be a linear map with generalized eigenvalues λ1, . . . , λn ∈ F .
Then V ∼= Vλ1 ⊕ · · · ⊕ Vλn as F -vector spaces, and by choosing the correct basis for each Vλi
we can put the matrix representation of T into Jordan canonical form.

Proof. Note that the xi from the Jordan blocks in Theorem 5.5.8 are the roots of the char-
acteristic polynomial of T , and hence precisely the eigenvalues of T (this should have been
covered in an elementary linear algebra class). Hence, we can group the blocks and corre-
sponding subspaces by eigenvalue to get the desired result.

This approach is actually a much more intuitive way of thinking about Jordan canonical form,
and is the one taken by [Sil23]. I recommend reading those notes, as it should hopefully help
clear up Jordan canonical form.

All of these results can be quite intimidating at first, so it can be incredibly useful to work
through some examples of both canonical forms. I will not do so in this text, as I would
prefer to keep it free of long examples, but I’ll provide some resources and tips for using
them.

1. [Sil23] has some excellent practice problems for Jordan canonical form (and a few for
Rational as well), approached in the manner I mentioned above.
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2. [Jac09] has some mediocre to bad (and very difficult) practice problems/examples,
following the approach taken here. However, Jacobson phrases everything in terms
of row instead of column vector2, so everything in there is what we’ve done with a
transpose applied to the matrices.

3. [Rom07] seems to have some examples that take an approach in-between the previous
two, and may be worth checking out. It also, however, takes a different notation and
order of bases for things, causing its results to be slightly different.

4. Many computer algebra systems and tutorials exist for these topics online as well, and
are likely just a Google away.

2This is terrible practice, don’t do it.
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Chapter 6

Universal Algebras

6.1 Universal Algebras

Let us start this chapter with a construction which will seem rather abstract now, but becomes
powerful in practice. Much of this section is based of the results in [BS12].

Definition 6.1.1. A universal algebra A = ⟨U ,F⟩ is a set (called the universe) U along with
a family of operations F from Un to U of finite arity.

Example 6.1.1. A group is a universal algebra ⟨G, ·,−1 , 1⟩ with 2-ary, 1-ary, and 0-ary oper-
ations respectively satisfying the following axioms, for all x, y, z ∈ G

1. x · (y · z) = (x · y) · z

2. x · 1 = 1 · x = x

3. x · x−1 = x−1 · x = 1

A group is called commutative (or Abelian) if the additional axiom x · y = y · x is satisfied.

Example 6.1.2. A monoid is a group without the 1-ary operation.

Example 6.1.3. A ring is a universal algebra ⟨R, ·, 1,+,−, 0⟩ such that

1. ⟨R,+,−, 0⟩ is a commutative group

2. ⟨R, ·, 1⟩ is a monoid

3. ∀x, y, z ∈ R,

x · (y + z) = x · y + x · z (x+ y) · z = x · z + y · z

Example 6.1.4. A left monoid over a ring R is a universal algebra ⟨M,+,−, 0, {fr}r∈R⟩ such
that

1. ⟨M,+,−, 0⟩ is a commutative group
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2. ∀x, y ∈M, r ∈ R, fr(x+ y) = fr(x) + fr(y)

3. ∀x ∈M, r, s ∈ R, fr+s(x) = fr(x) + fs(x) and fr·s(x) = fr(fs(x))

Definition 6.1.2. A sub-universe of a universal algebra A = ⟨U ,F⟩ is a subset S ⊆ U such
that ⟨S,F ′⟩ is a universal algebra, where F ′ = {f|S | f ∈ F}. ⟨S,F ′⟩ is a sub-algebra of A.

Definition 6.1.3. A congruence ≡ on a universal algebra A = ⟨U ,F⟩ is an equivalence
relation on U such that for any n-ary operation f ∈ F and ai, a

′
i ∈ U

ai ≡ a′i ⇒ f(a1, . . . , an) ≡ f(a′1, . . . , a
′
n)

The notion of congruence allows us to define a particular type of universal algebra, which we
call the quotient algebra.

Theorem 6.1.4. Let A = ⟨A,F⟩ be a universal algebra and ≡ a congruence on A. Then
A/≡ = ⟨A/≡,F⟩ is a well-defined universal algebra, where an n-ary f ∈ F acts by, for any
[a1], . . . , [an] ∈ A/≡

f([a1], . . . , [an]) = [f(a1, . . . , an)]

Proof. It suffices to show that the action of each n-ary f ∈ F is well-defined. Indeed, suppose
that [ai] = [bi] ∈ A/≡. Then since ≡ is a congruence and ai ≡ bi,

f(a1, . . . , an) ≡ f(b1, . . . , bn)⇒ [f(a1, . . . , an)] = [f(b1, . . . , bn)]

as required.

This A/≡ is called the quotient of A by ≡. Finally, let A′ ⊆ A be an arbitrary subset.
We define the universal algebra generated by A′, denoted ⟨A′⟩ to be the intersection of all
universes B containing A′ such that ⟨B,F⟩ is a universal algebra. This is well-defined as
long as the intersection of universes with operations F is a universe, the verification of which
is left to the reader.

At this point, we begin to play a bit fast and loose with definitions to avoid some more
abstract concepts. We’ll say that two universal algebras are of the same type if they have a
corresponding set of n-ary operations, that is their n-ary operations can be put in bijective
correspondence for each n ∈ N ∪ {0}. The most basic example of this would be to note that
any sub-algebra is of the same type as its parent algebra. For a more precise notion than
this, see [BS12].

Definition 6.1.5. Let A = ⟨A,F⟩,B = ⟨B,F⟩ be universal algebras of the same type. A
map φ : A→ B is called a homomorphism if, for any n-ary operation f ∈ F and ai ∈ A

f(φ(a1), . . . , φ(an)) = φ(f(a1, . . . , an))

Note. There’s a bit of an abuse of notation here, as f is technically two different operations
on A and B. We regard it as acting on both by the pairing between n-ary operations of the
two universal algebras. This notation will be used for the remainder of this section.
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Note. A nice property of homomorphisms, the proof of which is left to the reader, is that the
composition of two homomorphisms is a homomorphism.

An injective homomorphism is called a monomorphism, a surjective homomorphism an epi-
morphism, and a bijective homomorphism an isomorphism. An isomorphism from a universe
to itself is called an automorphism, and two universal algebras are called isomorphic if there
exists an isomorphism between them, which is denoted by the symbol ∼=. Homomorphism are
of vital importance of algebra, as their ”preservation” of operations allows us to determine
when two universal algebras are essentially identical. In order to make this more precise, we
need the following two lemmas.

Lemma 6.1.6. Suppose A,B are universal algebras of the same type, and φ : A → B a
homomorphism. Then φ(A) = ⟨φ(A),F⟩ is a sub-algebra of B, and φ−1(B) = ⟨φ−1(B),F⟩
is a sub-algebra of A.

Proof. Let f ∈ F be an n-ary operation. If b1, . . . , bn ∈ φ(A), then ∃ai ∈ A such that
φ(ai) = bi. Thus,

f(b1, . . . , bn) = f(φ(a1), . . . , φ(an)) = φ(f(a1, . . . , an)) ∈ φ(A)

so φ(B) is a sub-algebra, as claimed. The proof of the second statement is essentially identical.

Lemma 6.1.7. Suppose A,B are universal algebras of the same type, and φ : A → B a
homomorphism. Then the equivalence relation ≡ on A given by a1 ≡ a2 if φ(a1) = φ(a2) is
a congruence.

Proof. Suppose f ∈ F is an n-ary operation, and ai ≡ a′i ∈ A. Then

φ(f(a1, . . . , an)) = f(φ(a1), . . . , φ(an)) = f(φ(a′1), . . . , φ(a
′
n)) = φ(f(a′1, . . . , a

′
n))

so f(a1, . . . , an) ≡ f(a′1, . . . , a
′
n), as required.

In the case of the above lemma, we denote that A/≡ = A/ker(φ), and A/≡ = A/ker(φ).

With these, we finally reach the fundamental theorems of homomorphisms.

Theorem 6.1.8 (The First Fundamental Theorem of Homomorphisms). Suppose A,B are
universal algebras of the same type, and φ : A → B a homomorphism. Then the projection
map p : A → A/ker(A) is a homomorphism, and there exists an isomorphism ψ : A/ker(φ) →
φ(A) such that the following diagram commutes

A B

A/ker(φ)

φ

p
ψ

In particular, A/ker(φ) ∼= φ(B).
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Proof. The first statement follows from the projection map onto equivalence classes for a
congruence always being a homomorphism, which is easily verified and left to the reader.
We define ψ : A/ker(A) → φ(A) by, for any [a] ∈ A/ker(A), ψ([a]) = ψ(a). It remains to show
that this is in fact well-defined, a homomorphism, bijective, and satisfies the commutative
property. For the first, we note that if [a] = [a′] ∈ A/ker(A), then φ(a) = φ(a′), making ψ
well-defined. Pick any n-ary f ∈ F , and [a1], . . . , [an] ∈ A/ker(A). Then

f(ψ([a1]), . . . , ψ([an])) = f(φ(a1), . . . , φ(an)) = φ(f(a1, . . . , an)) = φ(f([a1], . . . , [an]))

so ψ is a homomorphism. Pick any b ∈ φ(B). Then ∃a ∈ A such that φ(a) = b, so
ψ([a]) = b and hence ψ is surjective. Suppose ψ([a1]) = ψ([a2]), where [a1], [a2] ∈ A/ker(A)
Then φ(a1) = φ(a2) ⇒ [a1] = [a2], so ψ is injective and hence bijective. Finally, we check
the commutativity property. Let a ∈ A, then by definition

φ(a) = ψ([a]) = (ψ ◦ p)(a)

as claimed.

For the next two isomorphism theorems, we need the notion of a sub-congruence.

Definition 6.1.9. Let A be a universal algebra, and ≡ a congruence on A. A congruence
∼ on A is called a sub-congruence of ≡ if a ≡ a′ ⇒ a ∼ a′, for all a, a′ ∈ A.

Lemma 6.1.10. Let ≡ be a congruence on a universal algebra A, and ∼ a sub-congruence
of ≡. Let ≡/∼ be the equivalence relation on A/∼ defined by

[a]∼≡/∼[a′]∼ ⇐⇒ a ≡ a′

This is a well-defined equivalence relation, and a congruence on A/∼

Proof. We start by show that it is an equivalence relation. Reflexivity and symmetry are
clear, so it suffices to show transitivity. Suppose that [a], [a′], [a′′] ∈ A/∼ are such that [a]≡/∼[a′]
and [a′]≡/∼[a′′]. Then a ≡ a′ and a′ ≡ a′′, so a ≡ a′′ and hence [a]≡/∼[a′′], as required. Now,
let f ∈ F be an n-ary operation. Suppose [ai]≡/∼[bi] ∈ A/∼. Then ai ≡ bi, so

f([a1], . . . , [an]) = [f(a1, . . . , an)]≡/∼[f(b1, . . . , bn)] = f([b1], . . . , [bn])

making ≡/∼ a congruence as claimed.

Theorem 6.1.11 (The Second Fundamental Theorem of Homomorphisms). Let ≡ be a
congruence on a universal algebra A, and ∼ a sub-congruence of ≡. Then there exists an
isomorphism φ : (A/∼)/(≡/∼)→ A/≡ such that the following diagram commutes.

A A/≡

A/∼ (A/∼)/(≡/∼)

φ
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where all the unlabelled arrows are the natural projection maps. In particular, A/≡ ∼= (A/∼)/(≡/∼).

Proof. We define φ by the rule, for any a ∈ A, φ([[a]∼]≡/∼) = [a]≡. We first show that it is a
homomorphism. Pick any n-ary f ∈ F , ai ∈ A. Then

f(φ([[a1]∼]≡/∼), . . . , φ([[an]∼]≡/∼)) = f([a1]≡, . . . , [an]≡) = [f(a1, . . . , an)]≡

= φ([[f(a1, . . . , an)]∼]≡/∼) = φ(f([[a1]∼]≡/∼, . . . , [[an]∼]≡/∼))

as required. Next, we show that it’s injective. Suppose that φ([[a]∼]≡/∼) = φ([[a′]∼]≡/∼) for
some a, a′ ∈ A. Then [a]≡ = [a′]≡ ⇒ a ≡ a′ ⇒ [a]∼≡/∼[a′]∼ ⇒ [[a]∼]≡/∼ = [[a′]∼]≡/∼ as re-
quired. Surjectivity is clear, so φ is an isomorphism. Finally, we show that the commutativity
property is satisfied. Pick any a ∈ A. Then

(φ ◦ p≡/∼ ◦ p∼)(a) = (φ ◦ p≡/∼)([a]∼) = φ([[a]∼]≡/∼) = [a]≡ = p≡(a)

as required.

Theorem 6.1.12 (The Third Fundamental Theorem of Homomorphisms). Suppose B is a
subalgebra of A, and ≡ is a congruence on A. Set B≡ = {a ∈ A | B ∩ [a]≡ ̸= ∅}. Then

1. ≡|B is a congruence

2. B≡ is a subalgebra of A

3. B/≡|B
∼= B≡/≡|B≡

Proof. (1) is fairly clear, and its proof will be left to the reader. For (2), pick any n-ary
f ∈ F and a1, . . . , an ∈ B≡. It suffices to show that f(a1, ,̇an) ∈ B≡. Indeed, we can note
that for each ai, there exists some bi ∈ B such that ai ≡ bi, and hence

[f(a1, . . . , an)]≡ = f([a1]≡, . . . , [an]≡) = f([b1]≡, . . . , [bn]≡) = [f(b1, . . . , bn)]≡

Since B is a subalgebra, f(b1, . . . , bn) ∈ B, so it follows that [f(a1, . . . , an)]≡ ∩ B ̸= ∅ and
hence f(a1, . . . , an) ∈ B≡ as required. It is also good to note that this further shows that
B is a subalgebra of B≡. For (3), we first note that (1) implies that ≡|B≡ is a congruence,
so this statement is well-defined. We define our isomorphism φ : B/≡|B → B≡/≡|B≡ by, for
any b ∈ B, φ([b]≡|B

) = [b]≡|B≡
. We first show that this is a homomorphism. Pick any n-ary

f ∈ F and b1, . . . , bn ∈ B. Then

f(φ([b1]≡|B
), . . . , φ([bn]≡|B

)) = f([b1]≡|B≡
, . . . , [bn]≡|B≡

) = [f(b1, . . . , bn)]≡|B≡

= φ([f(b1, . . . , bn)]≡|B
) = φ(f([b1]≡|B

, . . . , [bn]≡|B
))

as required. Surjectivity is clear. To show that φ is injective, suppose that b, b′ ∈ B are such
that φ([b]B|≡

) = φ([b′]B|≡
). Then [b]≡|B≡

= [b′]≡|B≡
⇒ [b]B|≡

= [b′]B|≡
as required.

These theorems appear in different guises for groups in section 2.4, rings in section 3.4, and
modules in section 4.1. It’s worth taking the time now to go back through and look at each
of these chapters, and figure out for yourself how the homomorphism theorems for universal
algebras connect to the corresponding theorems in each chapter.
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6.2 Direct Products

This section is based on results from [BS12] and [Sil23]. Some of it may seem familiar to you
from the section on direct sums/products of modules, and if so that’s good! These ideas are
a generalization of those constructions.

In this section, we cover the one of the most common constructions on spaces in algebra, the
direct product. Before doing this, we have a quick bit of notation : we denote the collection
of all homomorphisms between universal algebras A,B by Hom(A,B).

Definition 6.2.1. Let {Ai}i∈I be an indexed family of universal algebras of the same type.
We call another universal algebra of the same type B a direct product of {Ai}i∈I if there exist
homomorphisms πi : B → Ai such that for any other universal algebra of the same type C
and homomorphisms {ψi : C → Ai}i∈I , there exists a unique homomorphism φ ∈ Hom(C,B)
such that πi ◦ φ = ψi for all i ∈ I.

This of course is quite an abstract definition. Luckily, for universal algebras we have the
following result to make things more tangible.

Theorem 6.2.2. For any indexed family {Ai}i∈I of universal algebras of the same type, there
exists a direct product unique up to a unique isomorphism.

Proof. We start with uniqueness. Suppose B, C are direct products of {Ai}i∈I . Then there
exists a unique homomorphism φ ∈ Hom(C,B) such that πi,B ◦ φ = πi,C , and there exists a
unique homomorphism ζ ∈ Hom(B, C) such that πi,C ◦ ζ = πi,B. It follows that πi,B ◦φ ◦ ζ =
πi,B, so φ ◦ ζ = IdC. Similarly, ζ ◦ φ = IdB, so φ is an isomorphism. By the uniqueness of
φ, ζ, it is the unique isomorphism between C,B, as claimed.

Next, we show existence. We define the universal algebra
∏

i∈I Ai as having the universe∏
i∈I Ai, and operations defined by, for any f ∈ F

f((ai1)i∈I , . . . , (ain)i∈I) = (f(ai1, . . . , ain))i∈I

where aij ∈ Ai. That this is a universal algebra is clear, and since projection maps be-
tween universal algebras are homomorphisms, we have our required homomorphisms πj ∈
Hom(

∏
i∈I Ai,Aj). It suffices then to show that these satisfy the desired property. Suppose

C is another universal algebra of the same type, and ψj ∈ Hom(C,Aj) homomorphisms. If we
try to define φ : C → B by πi ◦ φ = ψi, we can note that this requires φ(c) =

∏
i∈I ψi(c) for

any c ∈ C, giving the uniqueness of φ. It suffices then to prove that φ is a homomorphism.
Pick any f ∈ F and ci ∈ C. Then

f(φ(c1), . . . , φ(cn)) = f
(∏
i∈I

ψi(c1), . . . ,
∏
i∈I

ψi(cn)
)
=

∏
i∈I

f(ψi(c1), . . . , ψi(cn))

=
∏
i∈I

ψi(f(c1, . . . , cn)) = φ(f(c1, . . . , cn))

as required.
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Note. It is not too difficult to show, using the above theorem, that the direct product is
associative and commutative up to isomorphism.

There’s another important construction to mention here, called the direct sum.

Definition 6.2.3. Let {Ai}i∈I be an indexed family of universal algebras of the same type.
We call another universal algebra of the same type B a direct sum of {Ai}i∈I if there exist
homomorphisms ιi : Ai → B such that any other universal algebra of the same type C and
homomorphisms {ψi : Ai → C}i∈I , there exists a unique homomorphism φ ∈ Hom(B, C) such
that φ ◦ ιi = ψi for all i ∈ I.

This is essentially just the definition of the direct product with the arrows reversed. Similarly
to the direct product, one could show that the direct sum is unique up to unique isomorphism
when it exists. Existence is a much trickier proposition, as the structure of a direct sum can
get exceedingly complicated1. As such, we will treat direct sums in the subsequent chapters
on a case-by-case basis. A more unified description of direct sums and when they exist is
possible though category theory, which we cover next.

1I suspect that it’s not guaranteed for all universal algebras, but I have not yet thought of a counterexample
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Chapter 7

Categories

Mathematics, like physics, has a bit of an obsession with unifying itself under one ”theory
of everything”. Of course, this takes a much different form in mathematics, a subject where
what unifying means isn’t as clear1. For our purposes, unifying is the process of not only
formulating a basic logical system/set of axioms for mathematics, but formulating one which
can actually be used directly in modern research and provides a framework for comparing
similar mathematical objects. To my knowledge, no single concept has been more successful
in this endeavour than category theory, which we now explore. Everything in this section will
be based on similar ones from [Lan10], with other references mentioned when relevant.

It is also quite possible, in fact likely, that the contents of this chapter will seem rather
impenetrable to you right now. This is perfectly okay! It’s hard to jump to this level of
abstraction, and the hope is that chapters 8 and 9 will ease you into a lot of these concepts
before chapter 10 jumps in the deep end.

7.1 Basic Definitions

Definition 7.1.1. A category C = (O,A, dom, codom, ◦) is a collection of objects O, arrows
A, two maps dom, codom : A → O, and one partially defined binary ”composition” map
◦ : A×A → A satisfying the following axioms

1. If f, g ∈ A, then f ◦ g is defined if and only if codom(g) = dom(f), and in this case
dom(f ◦ g) = dom(g), codom(f ◦ g) = codom(f).

2. For each a ∈ O, there exists a map Ida ∈ A such that for all f, g ∈ A with dom(f) =
codom(g) = a

f ◦ Ida = f Ida ◦g = g

3. Composition, when defined, is associative.

There’s a ton to unpack here, so let’s start with some examples.

1But has proven far more fruitful than string theory.
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Example 7.1.1. The category Set has the collection of all sets as its objects and maps between
sets as its arrows, with standard function composition.

Example 7.1.2. The category Grp has the collection of all groups as its objects and the
collection of all homomorphisms between groups as its arrows, with standard function com-
position.

Note. There’s an important distinction to be made in both of the above examples about
what are and are not identical objects. Namely, two sets can be the same size, but unless
we explicitly identify all of their objects they are not the same set. For example, {a, b, c} ≠
{a, b, d}. With groups it’s similar, we can have the same group structure on two different
sets, but unless those underlying sets have the same objects we consider the groups to be
different. They are, however, isomorphic (we’ll define that shortly).

Example 7.1.3. A monoid is a (small) category with one object.

You may have noticed in these examples that the word collection is doing some heavy lifting.
Indeed, it is clear from the first that collections cannot just include sets, as the collection
of all sets is itself not a set. The solution to this, or at least one of them, is to allow our
collections to be what are called classes. These originate from the Gödel-Bernays axioms of
set theory, and for our purposes can be thought of as an extension of the idea of sets. That
is, every set is a class, but not every class is a set. We call a class proper if it is not a set. A
category is called small if its collections of objects and arrows are sets, and large otherwise.

We will not delve too deeply into foundational issues here, (a slightly more thorough exami-
nation of the topic can be found in [Lan10], and a full view on the topic belongs in a course
on logic) and will instead begin to familiarize ourselves with the myriad of terminologies used
in category theory.

1. The category C = (O,A, dom, codom, ◦) is usually just denoted by C. In this notation,
we denote O by ob(C) and A by hom(C).

2. The arrows of a category are often called morphisms, hence the notation hom(C). We
usually denote the set of all arrows between two objects a, b ∈ ob(C) by hom(a, b), and
show that f ∈ hom(a, b) by writing f : a→ b.

3. A morphism f : a→ b is called

(a) A monomorphism if, for any two morphisms g, h ∈ hom(c, a), we get f ◦ g =
f ◦ h⇒ g = h.

(b) An epimorphism if, for any two morphisms g, h ∈ hom(b, c), we get g◦f = h◦f ⇒
g = h.

(c) An isomorphism (or invertible) if there exists g : b→ a such that f◦g = Idb, g◦f =
Ida. Such a g is called an inverse.

(d) An endomorphism if a = b. The set of all such endomorphisms is denoted end(a).

(e) An automorphism if it is an isomorphism and endomorphism. The set of all such
automorphisms is denoted aut(a).
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4. Two objects a, b ∈ ob(C) are called isomorphic, denoted a ∼= b, if there exists an
isomorphism between them.

Let’s take a break at this point to do a short proof.

Proposition 7.1.2. Every isomorphism f : a→ b has a unique inverse g : b→ a. Further-
more, every isomorphism is a mono and epimorphism.

Proof. We begin with the first statement. Suppose g, h : b → a were two inverses. Then we
get

g = g ◦ Idb = g ◦ (f ◦ h) = (g ◦ f) ◦ h = Ida ◦h = h

We denote this unique inverse by f−1. Now for the second statement. Suppose g, h ∈
hom(c, a) and f ◦ g = f ◦ h. Then composing with f−1 on the left we get g = h, making f
monomorphic. The argument for epimorphic is essentially the same.

It’s important to note here that epi and monomorphisms may not behave exactly as you’d
expect. Specifically, they need not have left (right) inverses. We give such morphisms a
different name.

Definition 7.1.3. A morphism is split monic (i.e. a split monomorphism) if it has a left
inverse. We call such a left inverse a retraction of the morphism. Similarly, a morphism is
split epi (i.e. a split epimorphism) if it has a right inverse, and we call such a right inverse a
section of the morphism.

Note. We do not require that our sections or retraction be unique, and indeed they may not
be.

It should be clear from the definition that split monomorphisms are necessarily monomor-
phisms, and split epimorphisms necessarily epimorphisms, although the converse does not
hold in general.

There is one final piece of terminology for morphisms we’ll need before moving on to objects.

Definition 7.1.4. A morphism f : a→ a is called idempotent if f 2 = Ida. It is called split
idempotent if there exist morphisms g, h such that f = g ◦ h, h ◦ g = Id, where we do not
specify here the object that h ◦ g is the identity on.

Finally, we can start looking at terminology for objects in categories. An object a ∈ ob(C)
is called

1. Terminal if for each b ∈ ob(C) there exists exactly one morphism in hom(b, a).

2. Initial if for each b ∈ ob(C) there exists exactly one morphism in hom(a, b).

3. Null if it is initial and terminal.

There’s a couple of things to notice here about the above definitions.

1. If a ∈ ob(C) is initial or terminal, then hom(a, a) = {Ida}.
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2. If a ∈ ob(C) is null, then for each b, c ∈ ob(C) we can find unique g ∈ hom(b, a), h ∈
hom(a, c). We call h ◦ g ∈ hom(b, c) the zero arrow from b to c. Note that the
composition of two zero arrows is itself a zero arrow.

Before moving on to talking about functors, I would like to mention one more important
type of category.

Definition 7.1.5. A groupoid is a category in which all morphisms are invertible.

Note. A group is just a small groupoid with a single object.

We will not talk about groupoids in this text, but I felt them worth mentioning as they’re of
utmost importance in algebraic topology, which originated category theory.

I’ve given you a lot of information in this section, but I’ve so far omitted a pretty important
concept. Namely, I’ve given you no way to compare categories. Let’s fix that.

Definition 7.1.6. Let C,D be categories. A (covariant) functor f : C → D is a pair of maps
fo : ob(C)→ ob(D), fa : hom(C)→ hom(D) satisfying the following axioms.

1. If φ ∈ hom(a, b), then fa(φ) ∈ hom(fo(a), fo(b)).

2. If a ∈ ob(C), then fa(Ida) = Idfo(a).

3. If φ ∈ hom(a, b) and ψ ∈ hom(b, c), then fa(ψ ◦ φ) = fa(ψ) ◦ fa(φ).

Note. We normally denote both fo and fa by f , as the particular map being used is clear
from context.

This is where I’m going to make a big leap, so don’t be afraid to take time with this. We
can construct a category Cat, whose objects consist of all (small2) categories and morphisms
consist of all functors (the composition being standard function composition applied to the
object and arrow functions). This allows us to bring over all our terminology for morphisms
and apply it to functors, in particular giving us the notion of isomorphic categories.

There are a couple more terms we use when describing functors. We call a functor f : C → D

1. Faithful if for any pair of objects a, b ∈ C, fa : hom(a, b)→ hom(fo(a), fo(b)) is injective.

2. Full if for any pair of objects a, b ∈ C, fa : hom(a, b)→ hom(fo(a), fo(b)) is surjective.

3. Fully faithful if it is full and faithful.

4. An endofunctor if C = D.

Note. Faithful functors need not be monomorphisms, full functors need not be epimorphisms,
and fully faithful functors need not be isomorphisms.

2Proof that this caviot is required can be found here [rus99], and my thanks to Oakley Edens for pointing
this out to me.
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Functors also allow us to work a bit more with sub-categories (which are defined in the exact
way you’d expect). These come with an inclusion functor, and we call a sub-category full if
that inclusion functor is full.

I’ll also mention a classic example of a functor here, the forgetful functor. Generally, this is
a functor that takes a category with a ”richer” structure to one with a ”weaker” structure.
Let’s look at some examples.

Example 7.1.4. The forgetful functor f : Grp→ Set, which takes groups to their underlying
sets and homomorphisms to their underlying set maps.

Example 7.1.5. The forgetful functor f : Rng → AbGrp (rings to Abelian groups), which
forgets the multiplication structure on the ring and preserves the addition structure.

Finally, we wish to find a way to define morphisms between functors. This comes from the
following definition.

Definition 7.1.7. Take two functors f, g : C → D. A natural transformation τ : ob(C) →
hom(D) from f to g is a map such that for any a, b ∈ ob(C) and h ∈ hom(a, b), the following
diagram commutes.

f(a) g(a)

f(b) g(b)

τ(a)

f(h) g(h)

τ(b)

We call τ(a) a component of the natural transformation, and say that τ(a) is natural in a.

It will become clear in practice that the above notation is not ideal for natural transforma-
tions. We usually instead regard τ as a collection of maps {τa = τ(a) : f(a) → g(a)}a∈ob(C)
indexed by the objects of C, and denote that τ is a natural transformation from f to g by
τ : f

·−→ g.

What natural transformations are really doing is taking commutative diagrams to commu-
tative diagrams. Say, for example, that a, b, c are objects and f : a→ b, g : b→ c, h : a→ c
morphisms such that the following diagram commutes.

a c

b

h

f g

Then if X, Y are two functors and τ a natural transformation between them, we get the
following commutative diagram.

X(a) Y (a)

X(b) Y (b)

X(c) Y (c)

X(f)

τa

X(h)

Y (f)

X(g)

τb

Y (g)
τc

Y (h)
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In this way, natural transformations start to look like morphisms between functors. Indeed,
fix four functors W,X, Y : C → D, and let τ, γ be natural transformations from W to X,
X to Y , and Y to Z. We can define γ ◦ τ by (γ ◦ τ)(a) = γ(a) ◦ τ(a). We first check that
this is indeed a natural transformation from W to Y . To do this, we note that the following
diagram commutes

W (a) X(a) Y (a)

W (b) X(b) Y (b)

τ(a)

W (f)

(γ◦τ)(a)

γ(a)

X(f) Y (f)

τ(b) γ(b)

(γ◦τ)(b)

It is not too hard to check that this ”composition” is associative, and that for each functor
X we have an ”identity” natural transformation given by IdX(a) = IdX(a). Thus, we can
form the category Func(C,D), the category of all functors between these two categories with
natural transformations as morphisms. IfX, Y : C → D are two functors, we will often denote
the set of all natural transformations from X to Y by Nat(X, Y ) rather than hom(X, Y ).

Again, this further allows us to transfer over all our terminology for morphisms to natural
transformations, in particular defining an isomorphic natural transformation (usually called
a natural isomorphism) and hence a notion of equivalent functors. This notion of equivalent
functors, strangely, also turns out to be quite important to the study of objects. Indeed,
there’s a sense in which our notion of isomorphic categories is a little too strong. To fix this,
we weaken our notion of ”equivalent” categories, and say that two categories are equivalent
if there exist functors F : C → D, G : D → C such that G ◦ F ∼= IdC, F ◦G ∼= IdD

3.

7.2 Dual and Product Categories

Let C be a category. It’s opposite/dual category, denoted C∗, is the category with the same
collection of objects and arrows as C, but with the dom and codom functions switched. If
f ∈ hom(a, b), we denote the same arrow in C∗ by f ∗ ∈ hom(b, a). Composition is defined
by, if f ∗ ∈ hom(a, b), g∗ ∈ hom(b, c)

g∗ ◦ f ∗ = (f ◦ g)∗

It is not too difficult to show that this composition is associative, and that Id∗
a is an identity

for a under this composition, thus making the opposite category, in fact, a category.

Now, consider the functor-like map φ : C → D given by φ(a) = a, φ(f) = f ∗. This satisfies
all the axioms of a functor, except one. Namely, we get

φ(g ◦ f) = φ(f) ◦ φ(g)

We have a specific name for maps of this type.

3Yes, this does look like a homotopy. I’m not expanding on that here.
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Definition 7.2.1. Let C,D be categories. A contravariant functor f : C → D is a pair of
maps fo : ob(C)→ ob(D), fa : hom(C)→ hom(D) satisfying the following axioms.

1. If φ ∈ hom(a, b), then fa(φ) ∈ hom(fo(b), fo(a)).

2. If a ∈ ob(C), then fa(Ida) = Idfo(a).

3. If φ ∈ hom(a, b) and ψ ∈ hom(b, c), then fa(ψ ◦ φ) = fa(φ) ◦ fa(ψ).

Like with covariant functors (which we usually just call functors), we drop the subscripts
when working with contravariant functors and assume that the particular map being used
is clear from context. Our terminology of faithful, full, fully faithful, and endofunctors also
carries over to contravariant functors.

Before continuing, let’s prove two quick statements about opposite categories.

Proposition 7.2.2. C∗∗ ∼= C in the category Cat.

Proof. This follows immediately by noting that the functor-like maps above are contravariant
functors, that the map φ(a) = a, φ(f) = f ∗∗ is the composition of these maps, and that the
composition of two contravariant functors is a covariant functor. The inverse of this covariant
functor is clear.

Proposition 7.2.3. Suppose φ : C → D is a functor. Then we get an induced covariant
functor φ∗ : C∗ → D∗ given by φ∗(a) = a, φ∗(f ∗) = φ(f)∗.

Proof. Suppose f ∗ ∈ hom(b, a). Then φ∗(f ∗) = φ(f)∗ ∈ hom(φ(b), φ(a)), as required. The
second functor axiom is clearly satisfied, as the identity for a in C∗ is Id∗

a. For the third
axiom, suppose that f ∗ ∈ hom(a, b), g∗ ∈ hom(b, c). Then

φ∗(g∗ ◦ f ∗) = φ∗((f ◦ g)∗) = φ(f ◦ g)∗ = (φ(f) ◦ φ(g))∗ = φ(g)∗ ◦ φ(f)∗ = φ∗(g∗) ◦ φ∗(f ∗)

as required.

This functor is, unsurprisingly, often called the dual functor. Note that the map taking a
category to its dual and a functor to its dual is then an endofunctor of Cat, in particular an
invertible one.

One may ask, of course, why we would bother with contravariant functors. One motivation
is that it allows us to freely switch between a category and its dual. Say, for example, that
we have a functor f : C∗ → D. Then we can define a corresponding contravariant functor
f∗ : C → D by

f∗(a) = f(a), f∗(φ) = f(φ∗)

This is just part of a larger trend, called duality. In order to introduce this, we will unfortu-
nately4 need to delve a little deeper into logic.

4Depending on your viewpoint I suppose.
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Definition 7.2.4. Let a, b be arbitrary symbols for objects in a category, and f, g, h ones
for arrows. An atomic statement is then one of the following.

1. a = dom(f).

2. a = codom(f).

3. f is the identity arrow for a.

4. g can be composed with f to get h.

5. a = b.

6. f = g.

A statement is any well-formed phrase5 built from atomic statements, quantifiers (for all and
there exists), and connectives (and,or,if and only if, etc.). A sentence, in turn, is a statement
where every variable (symbol representing an object, arrow, etc.) is bound to a quantifier.

Let’s take a look at some examples. The following phrase would be a sentence.

Example 7.2.1. For all arrows f : a → b, there exists an object c and arrows g : b → c, h :
c→ a such that h ◦ g ◦ f is the identity arrow for a.

Note. In the above example, f : a→ b is an abbreviation of f has domain a and codomain b.

The next phrase would be a statement, but not a sentence.

Example 7.2.2. a is the domain of f .

We can then, from these, construct dual statement.

Definition 7.2.5. Let Σ be a statement. The dual of the statement, denoted Σ∗, is the
original statement with the following replacements for the component atomic statements

a = dom(f)↔ a = codom(f).

g can be composed with f to get h↔ f can be composed with g to get h.

To phrase the above much more simply, all arrows and compositions are reversed. The
interesting thing is what happens to our category axioms when they’re dualized. Namely,
absolutely nothing. All that happens is the domain and codomain functions being switched.
Thus, we get the following fundamental result.

Theorem 7.2.6 (Duality Principle). A statement Σ holds in a category C following from the
axioms of category theory if and only if Σ∗ holds in C∗.

For examples of this, see section 2.1 in [Lan10], which also goes into far more detail about
the concept of the duality principle. We will not get much deeper into it here, as it won’t be
relevant to us for a while.

Another basic construction in category theory is the product category.

5This has an official definition, but for our purposes it just means that it makes sense.
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Definition 7.2.7. Let C,D be categories. The product category C ×D has objects ob(C)×
ob(D), arrows hom(C)× hom(D), and element-wise composition.

In essence, it’s exactly what you’d think the product of two categories would be. These prod-
uct categories also come with obvious projection functors, defined in the following manner.

πC((a, b)) = a, πC((f, g)) = f, πD((a, b)) = b, πD((f, g)) = g

It turns out that these projections satisfy a very nice property.

Proposition 7.2.8. For any category E and functors φ : E → C, ψ : E → D, there exists a
unique functor γ : E → C ×D making the following diagram commute.

E

C C × D D

γ
ψφ

πC πD

Proof. We define the functor γ by

γ(ϵ) = (φ(ϵ), ψ(ϵ))

where ϵ ∈ E is an object or arrow. The verification that this is our desired (unique) functor
is then trivial.

In the construction above, we denote γ = φ× ψ and call it the product of the two functors.
One can note that

(f × g) ◦ (h× q) = (f ◦ h)× (g ◦ q)

Thus, × : Cat×Cat→ Cat is a functor. For this reason we often call functors from product
categories bifunctors, as they can be looked at as maps on the product which are functors in
each argument.

We finish by proving two facts about bifunctors.

Proposition 7.2.9. Let C,D, E be categories. For all objects c ∈ ob(C), d ∈ ob(D), let
Lc : D → E ,Md : C → E be functors such that Lc(d) = Md(c). Then there exists a bifunctor
S : C × D → E such that S(·, d) = Md, S(c, ·) = Lc (where S(·, d) denotes S with the second
argument fixed to d for the object and Idd for the arrow, and similar for S(c, ·)) if and only
if for any pair of arrows f : c→ c′, g : d→ d′ we get

Md′(f) ◦ Lc(g) = Lc′(g) ◦Md(f)

Furthermore, in this case we get S(f, g) =Md′(f) ◦ Lc(g).

Proof. It is clear that

(Idc′ , g) ◦ (f, Idd) = (f, d) = (f, Idd′) ◦ (Idc, g)

Applying S to both sides (assuming it existed), we’d get the following commutative diagram.
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S(c, d) S(c′, d)

S(c, d′) S(c′, d′)

S(f, Idd)

S(f,g)
S(Idc′ ,g)S(Idc ,g)

S(f, Idd′ )

This is equivalent to the diagram

S(c, d) S(c′, d)

S(c, d′) S(c′, d′)

Md(f)

S(f,g)
Lc′ (g)Lc(g)

Md′ (f)

which is exactly the claimed relations above. This proves necessity, so all that remains is to
show that a map defined in this manner is, in fact, a functor. This is left to the reader.

Theorem 7.2.10. Let S, S ′ : C ×D → E be two bifunctors. Let α : ob(C ×D)→ hom(E) be
a map such that α(c, d) : S(c, d) → S ′(c, d). Then α is a natural transformation from S to
S ′ if and only if α is natural in each argument.

Proof. First, suppose that α is natural. Then for any (f, g) ∈ hom((c, d), (c′, d′)), the follow-
ing diagram commutes.

S(c, d) S ′(c, d)

S(c′,d′) S ′(c′,d′)

α(c,d)

S′(f,g)S(f,g)

α(c′,d′)

In particular, this holds fixing either c or d. Now, suppose that α is natural in each ar-
gument. Then for any f ∈ hom(c, c′), g ∈ hom(d, d′), the following diagrams commute.

S(c, d) S ′(c, d)

S(c′,d) S ′(c′,d)

α(c,d)

S′(f, Idd)S(f, Idd)

α(c′,d)

S(c′, d) S ′(c′, d)

S(c′,d′) S ′(c′,d′)

α(c′,d)

S′(Idc′ ,g)S(Idc′ ,g)

α(c′,d′)

We combine these into the following diagram.

S(c, d) S ′(c, d)

S(c′,d) S ′(c′,d)

S(c′,d′) S ′(c′,d′)

α(c,d)

S′(f, Idd)S(f, Idd)

α(c′,d)

S′(Idc′ ,g)S(Idc′ ,g)

α(c′,d′)

Since S(Idc′ , g) ◦ S(f, Idd) = S(f, g) and S ′(Idc′ , g) ◦ S ′(f, Idd) = S ′(f, g), this proves that α
is natural.
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7.3 The Yoneda Lemma

The Yoneda lemma might be the most important but sneakily complicated results to come
from category theory. It represents a shift in perspective from looking at objects to looking
at maps between them. In particular, what the lemma will say is that there is nothing lost
in this shift!

I would like to give credit to [m3m17] for providing the perspective necessary for me to
understand the importance of this result. [Lan10] is strangely dismissive of it, and [Lan05]
doesn’t cover it at all6!

Without further ado (except to say that we call the collections hom(a, b) hom-sets), let’s
jump right into the thick of things.

Theorem 7.3.1 (Yoneda Lemma). Suppose D has small hom-sets, φ : D → Set is a functor,
and d ∈ ob(D). Then there exists a bijection

γ : Nat(hom(d, ·), φ)↔ φ(d)

which sends a natural transformation α ∈ Nat(hom(d, ·), φ) to αd(Idd) ∈ φ(d).

Proof. It suffices to show that any α ∈ Nat(hom(d, ·), φ) is uniquely defined by αd(Idd), and
that any choice of αd(Idd) will cause α to be a well-defined natural transformation. First,
suppose that α is a natural transformation. Then for any f ∈ hom(d, d′), the following
diagram commutes.

hom(d, d) φ(d)

hom(d, d′) φ(d′)

αd

φ(f)hom(d,f)

αd′

In particular, we get

(αd′ ◦ hom(d, f))(Idd) = (φ(f) ◦ αd)(Idd)⇒ αd′(f ◦ Idd) = φ(f)(αd(Idd))

Thus, αd′(f) = φ(f)(αd(Idd)), so α is fully defined by αd(Idd). That any choice of αd(Idd)
will do is clear, as the above equation αd′(f) = φ(f)(αd(Idd)) is the sole restriction coming
from the naturality condition.

Corollary 7.3.1.1. For any pair of objects d, d′ ∈ ob(D), each natural transformation from
hom(d, ·) to hom(d′, ·) has the form hom(f, ·) for some unique f : d′ → d.

Proof. By the Yoneda lemma we have the bijection

γ : Nat(hom(d, ·), hom(d′, ·))↔ hom(d′, d)

6I suspect because it’s a result with more applications in algebraic geometry/topology than anything, but
he also spends some time on representation functors so who knows really.
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Pick any natural transformation α from hom(d, ·) to hom(d′, ·), and define f = γ(α). Pick
any c ∈ ob(D) and g : d→ c. Then

αc(g) = hom(d′, g)(αd(Idd)) = g ◦ (αd(Idd)) = g ◦ γ(α) = g ◦ f = hom(f, c)(g)

Thus, α = hom(f, ·). The uniqueness of f follows from γ being a bijection.

This is the first really important observation from the Yoneda lemma: the set of natural
transformations between two hom-functors hom(d, ·), hom(d′, ·) is in bijection with the set
of arrows from d′ to d. Moreover, we’ve got a simple formula for finding all said natu-
ral transformations! But we’re not even close to done, because the lemma has far deeper
consequences.

γ (the Yoneda map), it turns out, is not the main object of interest that arises from the
Yoneda lemma. Define a functor Y : D∗ → Func(D,Set) given by, for any d, d′ ∈ ob(D) and
f : d′ → d ∈ hom(D)

Y(d) = hom(d, ·)
Y(f ∗) = hom(f, ·)

This is called the Yoneda functor, and it is this functor which allows us to demonstrate the
real idea behind the Yoneda lemma. Suppose we want to know if d ∼= d′. By functoriality7,
this is possible only if Y(d) ∼= Y(d′). Of course if Y(d) ∼= Y(d′), then there exists a natural
isomorphism α from Y(d) to Y(d′). But by the Yoneda lemma’ corollary Y is fully faithful,
so there exists a unique f : d′ → d and g : d → d′ such that Y(f ∗) = α,Y(g∗) = α−1. It
follows that Y(f ◦ g) = Id⇒ f ◦ g = Idd, and hence that d ∼= d′. What we have shown here
is the following.

Corollary 7.3.1.2. d ∼= d′ if and only if hom(d, ·) ∼= hom(d′, ·).

This is where the true magic of the Yoneda lemma happens, it tells us that all the information
about an object is encoded in the morphisms from that object. We therefore may, instead
of studying objects, study only morphisms. Of course, it seems odd that only arrows away
from the object would matter. This is easy to fix! None of our above proofs change if we
replace covariant with contravariant functors. That is, the following results hold.

Theorem 7.3.2 (Yoneda Lemma II). Suppose D has small hom-sets, φ : D → Set is a
contravariant functor, and d ∈ ob(D). Then there exists a bijection

γ : Nat(hom(·, d), φ) ∼= φ(d)

which sends a natural transformation α ∈ Nat(hom(·, d), φ) to αd(Idd) ∈ φ(d).

Proof. This follows by noting that contravariant functors from D are covariant functors from
D∗, and that hom(·, d) in D is the same as hom(d, ·) in D∗.

7The properties of being a functor.
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Corollary 7.3.2.1. For any pair of objects d, d′ ∈ ob(D), each natural transformation from
hom(·, d) to hom(·, d′) has the form hom(·, f) for some unique f : d→ d′.

Corollary 7.3.2.2. d ∼= d′ if and only if hom(·, d) ∼= hom(·, d′).

Our next goal will be to show that the Yoneda map is natural in φ and d (note that this
implies its contravariant version would be as well). To do this of course, we need to be a
little more precise. First, note that φ ∈ ob(Func(D,Set)). We will consider two functors
N,E : K = Func(D,Set)×D → Set, given by

N(φ, d) = Nat(hom(d, ·), φ) N(f, g)(α)a(h) = fa(αa(h ◦ g))
E(φ, d) = φ(d) E(f, g)(x) = (γψ,d′ ◦N(f, g) ◦ γ−1

φ,d)(x)

where (φ, d), (ψ, d′) ∈ ob(K), (f, g) : (φ, d) → (ψ, d′), α ∈ Nat(hom(d, ·), φ), a ∈ ob(D),
h : d′ → a, and x ∈ φ(d). Armed with this, we make precise the naturality of γ.

Proposition 7.3.3. γ is a natural isomorphism from N to E.

Proof. It suffices to show that γ is a natural transformation from N to E. To that end, pick
any (φ, d), (ψ, d′) ∈ ob(K) and (f, g) : (φ, d)→ (ψ, d′). Then for any α ∈ N(φ, d), we get

(E(f, g) ◦ γφ,d)(α) = E(f, g)(αd(Idd)) = (γψ,d′ ◦N(f, g) ◦ γ−1
φ,d ◦ γφ,d)(α)

= (γψ,d′ ◦N(f, g))(α)

Thus, the following diagram commutes

N(φ, d) E(φ, d)

N(ψ, d′) E(ψ, d′)

γφ,d

E(f,g)N(f,g)

γψ,d′

as required.

Let’s end off with something very silly : an incredibly overly complicated proof of Cayley’s
theorem (Theorem 2.2.5).

Proof. Suppose G is a group. We can represent G by a category C consisting of one object
∗ and morphisms which are all invertible. Note that in this setup, a natural transformation
from hom(·, ∗) to itself is equivalent to a group homomorphism, and hom(∗, ∗) is just G. By
Yoneda’s lemma, we get a bijection

γ : Nat(hom(·, ∗), hom(·, ∗))↔ hom(∗, ∗) = G

and Nat(hom(·, ∗), hom(·, ∗)) is just a subset of SG. We just then need to check that γ is a
homomorphism. To that end, pick any α, β ∈ Nat(hom(·, ∗), hom(·, ∗)). By Yoneda’s lemma,
there exist unique f, g ∈ G such that α = hom(·, f), β = hom(·, g). Thus, we get

γ∗(α ◦ β) = γ∗(hom(·, f) ◦ hom(·, g)) = γ∗(hom(f ◦ g, ·)) = Id∗ ◦f ◦ g = (Id∗ ◦f) ◦ (Id∗ ◦g)
= γ∗(α) ◦ γ∗(β)

as required.
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7.4 Universals

We next cover the concept of universal arrows and objects, which will be of great use in the
following section.

Definition 7.4.1. Suppose φ : D → C is a functor and c ∈ ob(C). A universal arrow from c
to φ is a pair (d, f) consisting of an object d ∈ ob(D) and an arrow f : c → φ(d) such that
for any other pair (d′, f ′), with d′ ∈ ob(D) and f ′ : c → φ(d′), there exists a unique arrow
g : d→ d′ making the following diagram commute.

c φ(d′)

φ(d)

f ′

φ(g)
f

When C = Set, we often instead refer to universal elements.

Definition 7.4.2. Suppose φ : D → Set is a functor. A universal element of φ is a pair
(d, x) consisting of an object d ∈ ob(D) and an element x ∈ φ(d) such that for any other
such pair (d′, x′), there exists a unique arrow f : d→ d′ such that φ(f)(x) = x′.

Let’s take a moment to consider how these are equivalent. First, suppose that (d, x) is a
universal element. Set c = {∗}, the one-element set. Define the arrow f : c → φ(d) by
f : ∗ 7→ x. Note that if (d′, f ′) is any other pair, picking the function f ′ : ∗ → φ(d′) is
equivalent to picking an element of d′ which is in its image, call this element x′. Then by the
definition of the universal element, there exists a unique g : d → d′ such that φ(g)(x) = x′,
that is a unique g such that the following diagram commutes

∗ φ(d′)

φ(d)

f ′

φ(g)
f

Hence, (d, f) is a universal arrow from ∗ to φ. Going the other way is a little more difficult.

Proposition 7.4.3. Suppose C has small hom sets, that is for any a, b ∈ ob(C), hom(a, b)
is a set. Let φ : D → C be a functor, c ∈ ob(C). Pick any d ∈ ob(D) and f : c → φ(d).
Define a functor F : D → Set in the following manner. For any a, b ∈ ob(D) and arrow
g : a→ b, F (a) = hom(c, φ(a)) and F (g) is the map from hom(c, φ(a)) to hom(c, φ(b)) given
by composing elements of hom(c, φ(a)) by φ(g) on the left. Then (d, f) is a universal arrow
from c to φ if and only if (d, φ(f)) is a universal element of F .

Proof. First, suppose that (d, f) is a universal arrow. Note that f ∈ hom(c, φ(d)) = F (d).
Pick any d′ ∈ ob(D) and f ′ ∈ hom(c, φ(d′)) = F (d′). Then by the properties of universal
arrows there exists a unique arrow g : d→ d′ making the following diagram commute
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c φ(d′)

φ(d)

f ′

φ(g)
f

Hence, g is the unique arrow such that φ(g) ◦ f = f ′ ↔ F (g)(f) = f ′, making (d, f) the
desired universal object of F . Now, suppose that (d, f) is a universal object of F . Pick any
d′ ∈ ob(D) and f ′ ∈ hom(c, φ(d′)). Then by the properties of the universal object, there
exists a unique arrow g : d→ d′ such that F (g)(f) = f ′ ↔ φ(g) ◦ f = f ′, thus making (d, f)
the desired universal arrow.

Of course, universality sounds like it should imply some form of uniqueness. This is, in fact,
the case.

Theorem 7.4.4. If (d, f), (d′, f ′) are a pair of universal arrows from c to φ, then there exists
a unique isomorphism g : d ∼= d′ making the following diagram commute

c φ(d′)

φ(d)

f ′

φ(g)
f

Proof. Uniqueness follows from the uniqueness of g in the definition. By definition, there
exists also a unique h : d′ → d making the following diagram commute

c φ(d′)

φ(d)

f ′

φ(g)

f
φ(h)

That is, the following diagram commutes

c φ(d)

φ(d)

f

φ(h◦g)
f

So by the uniqueness property of universal arrows, h ◦ g = Idd. The proof that g ◦ h = Idd′
is identical.

Corollary 7.4.4.1. Suppose (d, x), (d′, x′) are a pair of universal elements for φ. Then there
exists a unique isomorphism f : d→ d′ such that φ(f)(x) = x′.

We can also take the dual of the axioms of a universal arrow from an object to a functor to
get a universal arrow from a functor to an object.
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Definition 7.4.5. Suppose φ : D → C is a functor and c ∈ ob(C). A universal arrow from φ
to c is a pair (d, f) consisting of an object d ∈ ob(D) and an arrow f : φ(d) → c such that
for any other pair (d′, f ′), with d′ ∈ ob(D) and f ′ : φ(d′) → c, there exists a unique arrow
g : d′ → d making the following diagram commute.

c φ(d′)

φ(d)

f ′

φ(g)
f

Again, we get that the object d is unique up to some notion of a unique isomorphism.

7.5 (Co)limits

Definition 7.5.1. Let C, I be categories, and define the diagonal functor ∆ : C → Func(I, C)
by sending each c ∈ ob(C) to the constant functor taking the value c at each object of I and
each arrow of I to Idc. Arrows φ : c→ c′ are sent to the natural transformation taking each
object of I to φ. Let f : I → C be an arbitrary functor. A colimit (direct limit) of f is a
universal arrow (c, g) from f to ∆.

That’s a rather dense definition, so let’s unpack what it looks like in practice. If (c, g) is a
colimit of f then g is a natural transformation from f to ∆(c), and for all c′ ∈ ob(C) and
natural transformations g′ from f to ∆(c′) there exists a unique h : c → c′ such that the
following diagram commutes

f ∆(c′)

∆(c)

g′

∆(h)
g

That is, at any particular i, i′ ∈ ob(I) or arrow φ : i→ i′, we get the commutative diagram

f(i) f(i′)

c′ c′

c c

f(φ)

g′(i)

g(i′)

h

Idc′

g′(i′)

g(i)

Idc

h

Or, more concisely
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f(i) f(i′)

c′

c

f(φ)

g′(i)

g(i′)

h

g′(i′)

g(i)

This allows us to re-phrase the definition in the following manner.

Definition 7.5.2. Let f : I → C be an arbitrary functor. A colimit (direct limit) of f is
an object c ∈ ob(C) and collection of arrows {gi : f(i) → c}i∈ob(I) satisfying, for all arrows
φ : i→ i′, gi = gi′ ◦ f(φ), such that for any other object c′ ∈ ob(C) and collection of arrows
{g′i : f(i) → c′}i∈ob(I) satisfying the same conditions there exists a unique arrow h : c → c′

making the following diagrams commute, for all arrows φ : i→ i′

f(i) f(i′)

c′

c

f(φ)

g′i

gi′

h

g′
i′

gi

This hopefully makes it a bit more clear the sense in which we call this a ”limit”. The object
c is, of course, unique up to unique isomorphism if it exists (in the sense of the previous
section), and we therefore denote it (since we only care about things up to isomorphism) by
lim−→ f . The functor g is called the colimiting cone.

We’ll go now over some standard examples. Perhaps the most common (and in fact a way
I’ve seen the colimit defined) is to take ob(I) to be any partially ordered set, with a unique
arrow i → i′ if and only if i ≤ i′. In this case, denoting ob(I) = I, our definition becomes
the following.

Example 7.5.1. Let {ci}i∈I be a collection of objects in C. For each i ≤ i′, choose an arrow
φi,i′ : ci → ci′ , in a manner such that if i ≤ i′ ≤ i′′, then φi,i′′ = φi′,i′′ ◦ φi,i′ . A colimit of
these collections is an object c ∈ ob(C) along with a collection of arrows {gi : ci → c}i∈I
satisfying gi = gi′ ◦ φi,i′ such that for any other such object and collection c′, {g′i} satisfying
this condition, there exists a unique arrow h : c → c′ such that the following diagrams
commute

ci ci′

c′

c

φi,i′

g′i

gi′

h

g′
i′

gi
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Another common example is to take ob(I) to be a set with two elements and only identity
arrows. In this case, we get

Example 7.5.2. Let {c1, c2} be a pair of objects in C. The colimit of these objects is an object
c ∈ ob(C) along with a pair of arrows gi : ci → c such that for any other such object and pair
c′, g′i, there exists a unique arrow h : c→ c′ such that the following diagrams commute

c1 c2

c′

c

g′1

g2

h

g′2

g1

In this case, we call c the coproduct or direct sum of c1, c2, and denote it c1
∐
c2 or c1 ⊕ c2.

We can, of course, extend this idea to take the coproduct of a collection of elements.

Note. Taking the coproduct of two modules over R is the same as taking their direct sum.

If we instead take ob(I) = {a, b, c}, with identity arrows and ω : a→ b, γ : a→ c, we get the
following.

Example 7.5.3. Chose three objects a, b, c ∈ ob(C) and two arrows f : a → b, g : a → c. A
colimit of this diagram is an object d ∈ ob(C) and pair of arrows h : b → d, k : c → d such
that for any other object d′ ∈ ob(C) and pair of arrows h′ : b→ d′, k′ : c→ d′ there exists a
unique arrow n : d→ d′ making the following diagrams commute

a b

c d

d′

f

h
h′

g

k
n

k′

We call d the pushout of the diagram, and denote if b
∐

(f,g) c.

We can also dualize these definitions to get limits.

Definition 7.5.3. Let f : I → C be an arbitrary functor. A limit (indirect limit) of f is a
universal arrow (c, g) from ∆ to f .

Again, we can expand this out to the following equivalent definition.

Definition 7.5.4. Let f : I → C be an arbitrary functor. A limit of f is an object c ∈ ob(C)
and collection of arrows {gi : c→ f(i)}i∈ob(I) satisfying, for each arrow φ : i→ i′, gi′ = f(φ)◦
gi, such that for any other object c′ ∈ ob(C) and collection of arrows {g′i : c′ → f(i)}i∈ob(I)
satisfying the same conditions there exists a unique arrow h : c′ → c making the following
diagrams commute
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f(i) f(i′)

c′

c

f(φ)

g′i

gi′

h

g′
i′

gi

and c is unique up to some notion of unique isomorphism, so we denote it lim←− f . The map g is
called the limiting cone. All the examples from before also carry over pretty much unchanged.
The first becomes

Example 7.5.4. Let {ci}i∈I be a collection of objects in C. For each i ≤ i′, choose an arrow
φi,i′ : ci → ci′ , in a manner such that if i ≤ i′ ≤ i′′, then φi,i′′ = φi′,i′′ ◦ φi,i′ . A limit of these
collections is an object c ∈ ob(C) along with a collection of arrows {gi : c→ ci}i∈I satisfying
gi′ = φi′,i ◦ gi such that for any other such object and collection c′, {g′i}, satisfying the same
conditions there exists a unique arrow h : c′ → c such that the following diagrams commute

ci ci′

c′

c

φi,i′

g′i

gi′

h

g′
i′

gi

The second becomes

Example 7.5.5. Let {c1, c2} be a pair of objects in C. The limit of these objects is an object
c ∈ ob(C) along with a pair of arrows gi : c→ ci such that for any other such object and pair
c′, g′i, there exists a unique arrow h : c′ → c such that the following diagrams commute

c1 c2

c′

c

g′1

g2

h

g′2

g1

In this case, we call c the product or direct product of c1, c2, and denote it c1
∏
c2. We can,

of course, extend this idea to take the product of a collection of elements.

Note. Taking the product of two modules over R is the same as taking their direct product.

The third changes a little more.

Example 7.5.6. Chose three objects a, b, c ∈ ob(C) and two arrows f : b → a, g : c → a. A
limit of this diagram is an object d ∈ ob(C) and pair of arrows h : d → b, k : d → c such
that for any other object d′ ∈ ob(C) and pair of arrows h′ : d′ → b, k′ : d′ → c there exists a
unique arrow n : d′ → d making the following diagrams commute
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a b

c d

d′

f

h
h′

g

k
n

k′

We call d the pullback of the diagram, and denote if b
∏

(f,g) c.

7.6 Representations

This section was rather difficult to write, and as a result I ended up pulling from more sources.
In particular, ideas for proofs and some definitions in this section were pulled from [ET20],
[nLa24a], [nLa24b], [nLa24c], [nLa24d], and [nLa24e].

The Yoneda lemma, as stated so far, is useful, but its interesting consequences apply only to
functors of the form hom(d, ·) or hom(·, d). Our goal in this section will be to show that, in
fact, almost any functor to Set looks like one of these functors. The first step of our setup
is to give a special name these functors.

Definition 7.6.1. Let D be a category with small hom-sets. A representation of a functor
φ : D → Set is a pair (d, τ), where d ∈ ob(D) and τ ∈ Nat(hom(d, ·), φ). A functor is called
representable if it has a representation, and the d is called the representing object.

The representation of a contravariant functor is defined similarly, just replacing hom(d, ·)
with hom(·, d).

The second step of our setup is a little more complicated. You may remember the Yoneda
functor from section 7.3. We wish to study the dual of this functor

Y∗ : D∗∗ → Func(D,Set)∗

I first claim that this is actually (via composition with some isomorphisms) a functor from
D → Func(D∗,Set). The first part is fairly obvious, as we already know that D∗∗ ∼= D. The
second is not an isomorphism per-say, but it is an isomorphism if you restrict Func(D,Set)
to functors of the form hom(d, ·) (which is the range of Y anyway). Our functor for the
second part is then going to take hom(d, ·) to hom(·, d). For natural transformations τ :

hom(d, ·) ·−→ hom(d′, ·), it takes this to a natural transformation ℓ by, for any f : c → d in
D∗, ℓc(f) = τc(f∗)

∗. We check that this pair of maps Γ is, in fact, a split monomorphism.

That the object function is injective is clear. For the arrow function, suppose ℓ1 = ℓ2. Then
for any f : c → d, we get τ 1c (f∗)

∗ = τ 2c (f∗)
∗ ⇒ τ 1c (f∗) = τ 2c (f∗), and hence τ 1 = τ 2, as

required. Finally, we check that Γ is a functor. We just need to check identity and being
well-behaved under composition. First, suppose that d = d′ and τ is the identity natural
transformation for hom(d, ·). Then for any f : c → d, we get ℓc(f) = τc(f∗)

∗ = f ∗
∗ = f , as
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required. Now, suppose that τ : hom(d, ·) ·−→ hom(d′, ·), α : hom(d′, ·) ·−→ hom(d′′, ·), and pick
any f : c→ d. Then we get

Γ(α ◦ τ)c(f) = (α ◦ τ)c(f∗)∗ = (αc ◦ τc)(f∗)∗ = αc(τc(f∗))
∗ = αc((τc(f∗)

∗)∗)
∗

= Γ(α)c(τc(f∗)
∗) = (Γ(α)c ◦ Γ(τ)c)(f)

as required.

Let’s sum that all up. In the end, we instead say that out ”new” Y∗ is a functor from
D → Func(D∗,Set), which sends an object d to hom(·, d) and an arrow f : d → d′ to
Γ(hom(f∗, ·)∗) which acts by, for any g : c→ d,

Y∗(hom(f∗, ·)∗)c(g) = (hom(f∗, ·)∗c(g∗))∗ = (g∗ ◦ f∗)∗ = f ◦ g = hom(·, f)(g)

Hence, our map is d → hom(·, d) and f → hom(·, f). We call this new Y∗ by the name Ω.
Again, the Yoneda lemma implies that Ω is fully faithful. Often, we call Y the contravariant
Yoneda embedding and Ω the covariant Yoneda embedding, this naming convention presum-
ably arising from their respective domains. The point of constructing this Ω was exactly
that, to allow us to say things directly about D rather than D∗ using the Yoneda lemma.

We only need one last pair of definitions before we move on.

Definition 7.6.2. A category C is (co)complete8 if every functor from a small cateogry into
C has a (co)limit.

Definition 7.6.3. A functor f : C → D is (co)continuous if, given any functor g : I → C
from a small category I, then lim←− g (lim−→ g) existing implies that lim←−(f ◦ g) (lim−→(f ◦ g)) exists
and lim←−(f ◦ g) = f(lim←− g) (lim−→(f ◦ g) = f(lim−→ g)), with a similar preservation occurring for
the corresponding maps.

Alright, let’s finally start proving things.

Proposition 7.6.4. Set is (co)complete.

Proof. Let I be any small category, and F : I → Set a functor. For completeness, start by
defining c to be the set of all cartesian products of the form

∏
i∈I xi, where xi ∈ F (i). Note

that since I is small, c is well-defined. In particular, we’ll refine c to keep only the products
such that for any arrow φ : i → i′, F (φ)(xi) = xi′ . We define the gi : c → F (i) to be the
projection maps. First, we show the commutativity of all triangles of the form

F (i) F (i′)

c

F (φ)

gi′gi

for φ : i → i′. Indeed, suppose (xi)i∈ob(I) ∈ c. Then by construction, (φ ◦ gi)(xi)i∈ob(I) =
φ(xi) = xi′ = gi′(xi)i∈ob(I), as required. Now, suppose that (c′, {g′i}) is any other such pair.
Suppose there existed a map h : c′ → c such that the diagram

8You will occationally see this referred to as small (co)complete instead.
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F (i) F (i′)

c′

c

f(φ)

g′i

gi′

h

g′
i′

gi

commutes. Then for any y ∈ c′, we’d need for (gi ◦ h)(y) = g′i(y) ⇒ h(y) = (g′i(y))i∈ob(C).
We just need to check, then, that h is well-defined like this to show that c = lim←−F . But this
follows immediately by noting that φ ◦ g′i = g′i′ .

Now, for co-completeness. Define C =
⋃
i∈ob(I) F (i)×{i}, and restrict this C to only include

an element x ∈ F (i) if, for any given i′ ∈ ob(I) and arrows φ, ψ : i→ i′, F (φ)(x) = F (ψ)(x).
Again, since F is small, these constructions are all well-defined sets. We’ll say that (x, i) ∼0

(x′, i′) in C if there exists some φ : i → i′ such that F (φ)(x) = x′ or if there exists some
φ : i′ → i such that F (φ)(x′) = x. We then iteratively define ∼k, for each k ∈ N, by saying
(x, i) ∼k (x′, i′) if there exists some (x′′, i′′) such that (x, i) ∼k−1 (x

′′, i′′) ∼k−1 (x
′, i′). Finally,

we’ll say that (x, i) ∼ (x′, i′) if there exists some k ∈ N such that (x, i) ∼k (s′, i′). ∼ is an
equivalence relation on C, and we’ll define c = C/ ∼, with projection map q. Define each gi
by the inclusion F (i) ↪→ F (i)×{i} followed by applying q. We’ll show that these satisfy the
required properties. First, suppose that φ : i → i′ and x ∈ F (i). Then (x, i) ∼0 (x′, i′), so
by construction gi(x) = (gi′ ◦ φ)(x) as required. Now, suppose that (c′, {g′i}) is another such
pair. Suppose there existed a map h : c→ c′ such that the diagram

F (i) F (i′)

c′

c

f(φ)

g′i

gi′

h

g′
i′

gi

commutes. Pick any (x, i) ∈ C. Then we need for g′i(x) = (h ◦ gi)(x) ⇒ h([(x, i)]) = g′i(x).
Thus, we’re done as long as (x, i) ∼ (x′, i′) implies that g′i(x) = g′i′(x

′). This follows from two
observations.

1. ∼ is the weakest equivalence such that (x, i) ∼0 (x
′, i′)⇒ (x, i) ∼ (x′, i′).

2. Consider the projection map r : C → c′ given by all the g′i. r defines an equivalence
relation on C, call this R. If (x, i) ∼0 (x′, i′), then (without loss of generality) there
exists some φ : i → i′ such that F (φ)(x) = x′. Thus, g′i(x) = (g′i′ ◦ F (φ))(x) = g′i′(x

′),
so R is an equivalence relation such that (x, i) ∼0 (x

′, i′)⇒ (x, i)R(x′, i′).

Proposition 7.6.5. If C is a category, then Func(C,Set) is (co)complete.
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Proof. We’ll do the proof only for completeness, co-completeness is a similar proof. Suppose
I is small, and F : I → Func(C,Set) a functor. First we note that, by the previous
proposition, F (·)(c) has a limit for any c ∈ ob(C). We’ll define then, for each c ∈ ob(C), that
Gc = lim←−F (·)(c). Then for any a, b ∈ ob(C), f : a→ b, and φ : i→ i′, we get a commutative
diagram

F (i)(b) F (i′)(b)

Gb

F (i)(a) F (i′)(a)

Ga

F (φ)b

F (i′)(f)

F (i)(f)

F (φ)a

where the unlabelled arrows are those arising from the limiting cones. Thus, by the universal
property of the limit, there exists a unique arrow h : Ga → Gb such that the diagram

F (i)(b) F (i′)(b)

Gb

F (i)(a) F (i′)(a)

Ga

F (φ)b

F (i′)(f)

h

F (i)(f)

F (φ)a

always commutes. Thus, we can define a functor G : C → Set by the rules G(c) = Gc, G(f) =
h. That this is a functor is guaranteed by the uniqueness of each h. We wish to show that
G = lim←−F . To do this, we give some names to the unlabelled arrows in the above diagram

F (i)(b) F (i′)(b)

Gb

F (i)(a) F (i′)(a)

Ga

F (φ)b

F (i′)(f)

gi,b

gi′,b

h

F (i)(f)

F (φ)a

gi′,agi,a
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We’ll then define natural transformations gi : G
·−→ F (i) by (gi)a = gi,a. All that remains

then is to check that G with these natural transformations satisfies the required universal
property. To that end, pick any other functor H : C → Set and natural transformations g′i
satisfying the requisite commutative diagram. Then we get a commutative diagram

F (i) F (i′)

H

G

F (φ)

g′i

gi′

g′
i′

gi

Evaluating at any particular c ∈ ob(C), this becomes

F (i)(c) F (i′)(c)

H(c)

G(c)

F (φ)c

g′i,c

gi′,c

g′
i′,c

gi,c

So by the universal property of the limit, and since G(c) = lim←−F (·)(c), there exists a unique
hc : H(c)→ G(c) such that

F (i)(c) F (i′)(c)

H(c)

G(c)

F (φ)c

g′i,c

gi′,c

g′
i′,c

hc

gi,c

commutes. This uniquely defines our desired natural transformation h : c 7→ hc, we need
now just check that this is indeed a natural transformation. Indeed, this follows by noting
that for any f : a→ b, the diagrams
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F (i)(b) F (i′)(b)

H(b)

G(b)

F (i)(a) F (i′)(a)

H(a)

G(a)

F (φ)b

g′i,b

F (i′)(f)

gi′,b

g′
i′,b

H(f)

gi,b

G(f)

F (i)(f)

g′i,a

F (φ)a

gi′,a

g′
i′,a

ha

gi,a

and

F (i)(b) F (i′)(b)

H(b)

G(b)

F (i)(a) F (i′)(a)

H(a)

G(a)

F (φ)b

g′i,b

F (i′)(f)

gi′,b

g′
i′,b

H(f)

hb

gi,b

G(f)

F (i)(f)

g′i,a

F (φ)a

gi′,a

g′
i′,a

gi,a

commute, and by the universal property of the limit there exists a unique arrow k : H(a)→
G(b) such that
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F (i)(b) F (i′)(b)

H(b)

G(b)

F (i)(a) F (i′)(a)

H(a)

G(a)

F (φ)b

g′i,b

F (i′)(f)

gi′,b

g′
i′,b

H(f)

gi,b

G(f)

k

F (i)(f)

g′i,a

F (φ)a

gi′,a

g′
i′,a

gi,a

commutes.

Proposition 7.6.6. If C has small hom-sets, then each hom(c, ·) (hom(·, c)) is (co)continuous.

Proof. Again, and for the rest of this section, we prove only the first statement as the other
is dual. Fix some c ∈ ob(C) and small category I. Suppose F : I → C is a functor with a
limit. We’ll show that lim←− hom(c, F (·)) = hom(c, lim←−F ), with the expected maps. To that
end, pick any set X and maps {fi} such that for any φ : i→ i′, the diagram

hom(c, F (i)) hom(c, F (i′))

X

hom(c, lim←−F )

hom(c,F (φ))

fi′

hom(c,gi′ )

fi

hom(c,gi)

commutes. Each x ∈ X associates under fi to some unique arrow fi(x) : c→ F (i), satisfying
(F (φ) ◦ fi)(x) = fi′(x). That is, the diagram

F (i) F (i′)

c

lim←−F

F (φ)

fi′ (x)

gi′

fi(x)

gi

commutes, and hence there exists a unique hx : c→ lim←−F such that
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F (i) F (i′)

c

lim←−F

F (φ)

fi′ (x)

gi′

fi(x)

hx
gi

commutes. Note that hx ∈ hom(c, lim←−F ), so we’ve defined a function h : X → hom(c, lim←−F )
given by h(x) = hx. Our goal will be to show that

hom(c, F (i)) hom(c, F (i′))

X

hom(c, lim←−F )

hom(c,F (φ))

fi′

hom(c,gi′ )

fi

hhom(c,gi)

commutes, and h is the unique function for which this holds. Indeed, at any particlar x ∈ X
this diagram becomes

fi(x) fi′(x)

x

h(x)

F (φ)

fi′

gi′

fi

h
gi

which commutes by definition. This also makes uniqueness clear.

Proposition 7.6.7. The (contravariant) Yoneda embedding is (co)continuous.

Proof. Suppose I is small, C has small hom-sets, and F : I → C is a functor with a limit.
Since functor categories are complete, lim←−(Ω ◦ F ) exists. Furthermore, we know by previous
results that at any c ∈ ob(C)

(lim←−(Ω ◦ F ))(c) = lim←−((Ω ◦ F )(·)(c)) = lim←−(hom(c, F )) = hom(c, lim←−F ) = Ω(lim←−F )(c)

Also, by the previous proposition and the construction of the limits in proposition 7.6.5,
our corresponding maps are the desired hom(·, gi), where gi are the original maps from F .
Suppose f : c→ c′ is an arrow in C∗. Then (lim←−(Ω ◦ F ))(f) is the unique arrow making the
diagram
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hom(c′, F (i)) hom(c′, F (i′))

hom(c′, lim←−F )

hom(c, F (i)) hom(c, F (i′))

hom(c, lim←−F )

hom(c′,F (φ))

hom(f,F (i′))

hom(c′,gi)

hom(c′,gi′ )

(lim←−(Ω◦F ))(f)

hom(f,F (i))

hom(c,F (φ))

hom(c,gi′ )hom(c,gi)

However, the diagram9

hom(c′, F (i)) hom(c′, F (i′))

hom(c′, lim←−F )

hom(c, F (i)) hom(c, F (i′))

hom(c, lim←−F )

hom(c′,F (φ))

hom(f,F (i′))

hom(c′,gi)

hom(c′,gi′ )

hom(f, lim←−F )

hom(f,F (i))

hom(c,F (φ))

hom(c,gi′ )hom(c,gi)

commutes, as for any k ∈ hom(c, lim←−F ) we get gi ◦ k ◦ f∗ via both paths through the left side
(and similarly for the right side) of the diagram.

To summarize, we know now that every category C with small hom-sets is embedded con-
tinuously in a complete category via the Yoneda embedding. What we really want, then, is
for every element in Func(C∗,Set) to be the limit of something composed with the Yoneda
embedding, that is we want everything to just be a limit of functors of the form hom(·, c), as
we understand these functors very well.

Theorem 7.6.8 (Density). Let C be small. Then any contravariant (covariant) functor
F : C → Set is a colimit of representable contravariant (covariant) functors.

Proof. We prove only the contravariant case, the covariant case is similar. Define I to be
the category having as objects pairs (x, c) with c ∈ ob(C) and x ∈ F (c) and having as arrows
(x, c) → (x′, c′) maps g : c → c′ in C such that F (g)(x′) = x. We can define a covariant
functor G : I → Func(C∗,Set) by G(x, c) = hom(·, c) and G(f) = hom(·, f), that is by
composing the forgetful functor and Yoneda embedding. We claim that F = lim−→G. Indeed,
we get by the Yoneda lemma a bijection γ−1 : F (c)→ Nat(hom(·, c), F ) for each c ∈ ob(C).

9All of these diagrams are only really well-defined up to applying some unique isomorphism to
hom(c, lim←−F ). But of course we only care about objects up to unique isomorphisms anyhow, so that’s
fine!
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Thus, we can get for each x ∈ F (c) a unique natural transformation τc,x : hom(·, c) ·−→ F .
The diagram

hom(·, c) hom(·, c′)

F

hom(·,f)

τc′,x′τc,x

commutes, as for any d ∈ ob(C) this becomes

hom(d, c) hom(d, c′)

F (d)

hom(d,f)

τc′,x′ (d)τc,x(d)

Picking some g ∈ hom(d, c), one can calculate that τc,x(d)(g) = F (g)(x) and

(τc′,x′(d) ◦ hom(d, f))(g) = τc′,x′(d)(f ◦ g) = F (f ◦ g)(x′) = (F (g) ◦ F (f))(x′) = F (g)(x)

as required. We just need to show now that this commutative diagram satisfies the desired
universal property. To that end, pick any other H ∈ Func(C∗,Set) and set of maps gc,x :

hom(·, c) ·−→ G such that

hom(·, c) hom(·, c′)

H

hom(·,f)

gc′,x′gc,x

commutes. By the Yoneda lemma, each gc,x arises from the bijection γ−1 : Nat(hom(·, c), H)↔
H(c). In particular, we’ll say that each gc,x arises from some zc,x ∈ H(c). Now, suppose we

had a natural transformation ζ : F
·−→ H which made the diagram

hom(·, c) hom(·, c′)

H

F

hom(·,f)

gc,x

τc′,x′

gc′,x′

τc,x

ζ

commute. In particular, by our assumptions, we need only check that

H

hom(·, c)

F

ζ

gc,x

τc,x
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commutes. Evaluating at c and Idc ∈ hom(c, c), this implies

zc,x = gc,x(c)(Idc) = (ζ(c) ◦ τc,x(c))(Idc) = ζ(c)(x)

Thus, if such a natural transformation exists it must be given by ζ(c)(x) = zc,x. We check
that this is, in fact, a natural transformation. To that end, fix some a, b ∈ ob(C) and
g ∈ hom(a, b). Consider the diagram

F (b) H(b)

F (a) H(a)

ζ(b)

H(g)F (g)

ζ(a)

Chasing any x ∈ F (b) around the diagram, we get the expressions

H(g)(ζ(b)(x)) = H(g)(zb,x), ζ(a)(F (g)(x)) = za,F (g)(x)

So we need to show that these two expressions are equal. But of course the diagrams

hom(b, b) H(b)

hom(a, b) H(a)

gb,x(b)

H(g)hom(g,b)

gb,x(a)

commute, and hence

gb,x(a)(g) = (gb,x(a) ◦ hom(g, b))(Idb) = (H(g) ◦ gb,x(b))(Idb) = H(g)(zb,x)

Furthermore, the diagram

hom(a, b)

H(a)

hom(a, a)

gb,x(a)

ga,F (g)(x)(a)

hom(a,g)

commutes by assumption, so chasing around Ida we get

za,F (g)(x) = ga,F (g)(x)(a)(Ida) = (gb,x ◦ hom(a, g))(Ida) = gb,x(a)(g)

Thus, we get za,F (g)(x) = gb,x(a)(g) = H(g)(zb,x) = H(g)(ζ(b)(x)), making ζ a natural trans-
formation. Finally, we check that

160



CHAPTER 7. CATEGORIES 7.7. SOME FINAL REMARKS

H

hom(·, c)

F

ζ

gc,x

τc,x

commutes. Fix any b ∈ ob(C), and g ∈ hom(b, c). Then we get

gc,x(b)(g) = zb,F (g)(x) = ζ(b)(F (g)(x)) = (ζ(b) ◦ τc,x(b))(g)

as required.

We can sum up the above section with a dogma : Every functor to Set is uniquely
specified by representable functors, which arise from the (co)continuous Yoneda
embedding, and two objects in a category are isomorphic if and only if their
corresponding representable functors are isomorphic.

Or, put more succinctly.

All the information about small categories are contained in their representable
functors to Set.

We need not look at objects or arrows at all really, only functors.

7.7 Some Final Remarks

I cannot emphasize enough how brief of an overview of category theory this was. I leave off
here in an attempt not to get too diverted from our goal of studying algebra, as categories
often crop up more in situations arising from algebraic topology or geometry. Indeed, we will
see them again in detail in chapters 9 and 10, as we start to cover homology, cohomology,
Abelian categories, monoidal categories, and the like.

There exists also generalizations of categories, leading to n-categories and∞-categories. The
interested reader can start there study of these in [Lan10], but I believe there are also books
dedicated exclusively to that subject which are likely better. On that note, I have yet to
find a good introductory book for category theory. It’s really one of those subjects that you
just need to get your hands dirty with to fully understand what’s going on. There are plenty
out there though, so feel free to try and find one. It will, at the very least, be better than
[Lan10].

Finally, I would be remiss if I didn’t mention the existence of homotopy type theory [Uni13].
Is it useful? Not really. But it does seem very cool, and I need to justify my purchase of that
book somehow.
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Chapter 8

Field Extensions and Galois Theory

8.1 Algebraic Extensions

Much of this section is based off of notes from lectures by Dr. Sujatha Ramdorai, and similar
sections in [Lan05].

Let’s start with the most basic definition in field theory.

Definition 8.1.1. Let F,K be fields. We say that K is a field extension of F , denoted K/F
if there exists an embedding (i.e. an injective homomorphism) F ↪→ K.

We take the convention of identifying a field with its embedding in an extension K, as this
is a much easier way to work with things. The first tool we’d like, in field theory, is a way
to measure the ”size” of an extension. To do this, we note that K is a vector space over F ,
and define

Definition 8.1.2. Let K/F be a field extension. The degree of the extension, denoted
[K : F ], is dimF (K). K/F is called a finite extension if [K : F ] <∞.

Proposition 8.1.3. If E/K/F is a tower of field extensions (i.e. E/K is a field extension
and K/F is a field extension), then [E : F ] = [E : K][K : F ].

Proof. Let {xi}i∈I be a basis for K over F and {yj}j∈J a basis for E over K. It suffices to
show that {xiyj}i∈I,j∈J is a basis for E over F . First, we show that it is spanning. Pick any
z ∈ E. Then there exist αj ∈ K such that z =

∑
j∈J αjyj. Furthermore, there exist βj,i ∈ F

such that αj =
∑

i∈I βj,ixi. Thus, we get

z =
∑

i∈I,j∈J

βj,ixiyj

as required. Next, we show linear independence. Suppose there exist αi,j ∈ F such that

0 =
∑

i∈I,j∈J

αi,jxiyj
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Then we get

0 =
∑
j∈J

(∑
i∈I

αi,jxi

)
yj

Each
∑

i∈I αi,jxi ∈ K, so by the linear independence of the yj we get that
∑

i∈I αi,jxi = 0
for each j ∈ J . But the xi are also linearly independent, and hence αi,j = 0 for all i ∈ I, j ∈
J .

Note. We drop the underline notation for vectors here, as we want to emphasize that these
are really field elements.

Corollary 8.1.3.1. If K/F,E/K are finite, then so is E/F .

Now that we’ve got the basics out of the way, we can get to the namesake of this section.

Definition 8.1.4. Let K/F be a field extension. We say that a ∈ K is algebraic over F
if there exists a polynomial p ∈ F [x] such that p(a) = 0. We say that K/F is an algebraic
extension if every a ∈ K is algebraic over F .

We’ll next define a couple of related notions, which we will show in the end are all related.

Definition 8.1.5. Let K/F be a field extension, a ∈ K algebraic over F . A minimal
polynomial of a over F is a monic polynomial in F [x] of minimal degree of which a is a root.

Proposition 8.1.6. Minimal polynomials are unique and irreducible.

Proof. Suppose f ∈ F [x] satisfied f = gh, where g, h ∈ F [x], and f(a) = 0. Then, without
loss of generality, g(a) = 0, so either f is not irreducible or h ∈ F . In the first case we
get deg(g) < deg(f), and hence f cannot be a minimal polynomial of a. Thus, minimal
polynomials must be irreducible. For uniqueness, suppose that f, g ∈ F [x] were two minimal
polynomials of a. Then they are both irreducible, and both have the same degree n ∈ N.
Since F is a field, (f, g) = (h), where h ∈ F [x] is the GCD of f and g. If hk = f , where
k ∈ F [x], then since f is irreducible either h ∈ F , in which case (h) = F [x], or h is a unit
multiple of f . The first case would imply that every polynomial in F [x] has a as a root,
which is impossible. Hence, h must be a unit multiple of both f and g, making f a unit
multiple of g. Since f, g are both monic, we conclude that f = g.

Since minimal polynomials are uniquely defined when they exist, we denote the minimal
polynomial of a over F by min(a, F ). Note that a ∈ F if and only if min(a, F ) = x− a.

Definition 8.1.7. Let K/F be a field extension, and a ∈ K. We denote by F (a) the smallest
field contained in K containing F and a.

Note. It is not too hard to see that F (a) ∼= FF(F [a]).

Theorem 8.1.8. Let K/F be a field extension, and a ∈ K. Then the following are equivalent.

1. a is algebraic over F .

2. F (a) = F [a].
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3. [F (a) : F ] is finite.

Proof. First, suppose that a is algebraic over F . That F [a] ⊂ F (a) is clear, so we just need
to show that F [a] is a field to prove the second statement. To that end, let p = min(a, F ),
and write p =

∑n
i=0 αix

i. Since p(a) = 0, we conclude that any z ∈ F [a] can be written in
the form z =

∑r
i=0 βia

i for some βi ∈ F , where r < n, as an =
∑n−1

i=0 αix
i. Assume z /∈ F , as

in that case finding an inverse for z is either trivial or z = 0. Since p is irreducible, no factor
of z(x) =

∑r
i=0 βix

i divides p(x), and vice-versa. Thus, GCD(p(x), z(x)) = 1, so there exists
some h, k ∈ F [x] such that p(x)h(x)+z(x)k(x) = 1⇒ p(a)h(a)+z(a)k(a) = 1⇒ z(a)k(a) =
1, giving us an inverse for z. Thus, F [a] is a field as claimed. The third statement follows
from the second by noting that since p is of minimal degree, {1, a, . . . , an−1} form a basis
for F [a]. That the third statement implies the first is immediate, as otherwise {1, a, a2, . . . }
would be linearly independent.

Note. In particular, [F (a) : F ] = deg(min(a, F )) when this is well-defined.

Corollary 8.1.8.1. Let E/K/F be a tower of algebraic extensions. Then E/F is algebraic.

Proof. Pick any a ∈ E. Since a is algebraic over K, p = min(a,K) is well-defined. Write
p =

∑n
i=0 αix

i, where αi ∈ K. We get from this a tower of field extensions F (α1, . . . , αn, a)/
F (α1, . . . , αn)/F , each of which is finite by Theorem 8.1.8. Since clearly F (a) ⊂
F (α1, . . . , αn, a), it follows that F (a)/F is a finite extension, and hence a is algebraic over
F .

Note. If K can be written in the form F (a1, . . . , an) for some ai ∈ K, then we call K a
finitely generated over F . It is clear that all finitely generated extensions generated by
algebraic elements are both algebraic and finite. However, algebraic extensions need not be
finite, or finitely generated.

There’s one more way of combining fields we need to cover in this section.

Definition 8.1.9. Let F,K be subfields of a field E. The composition of F,K, denoted FK,
is the smallest subfield of E containing F and K.

Note. If K,E are both overfields (i.e. fields containing) some F , then KE is the union of all
fields of the form F (α1, . . . , αn), where αi ∈ K ∪ E.
Note. [KE : F ] = [K : F ][E : F ] does not, in general, hold. It does happen to hold if
K ∩ E = F .

Proposition 8.1.10. If K/F,E/F are algebraic and K,E are subfields of some common
field, then KE/F is algebraic.

Proof. Pick any a ∈ KF . By the above observation, there exist some α1, . . . , αn ∈ K ∪ E
such that a ∈ F (α1, . . . , αn). But since K,E are both algebraic extensions of F , each αi is
algebraic over F , and hence [F (α1, . . . , αn) : F ] < ∞, making this extension algebraic over
F .

Proposition 8.1.11. If K/F is a field extension, E/F an algebraic field extension, and
E,K are subfields of a common field, then KE/K is algebraic.
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Proof. Pick a ∈ KE. We know there exist elements αi ∈ K and βj ∈ E such that a ∈
F (α1, . . . , αn, β1, . . . , βm). Hence, a ∈ K(β1, . . . , βm). Since each βi is algebraic over F , they
are certainly algebraic over K, and hence [K(β1, . . . , βm) : K] <∞.

The above three properties are very nice ones for field extensions to have, so we end off by
giving this collection of properties a name.

Definition 8.1.12. Let C be a class of field extensions. We call C distinguished if

1. K/F,E/K ∈ C ⇐⇒ E/F ∈ C.

2. K/F,E/F ∈ C and K,E both being subfields of a common field implies that KE/F ∈
C.

3. E/F ∈ C, K/F a field extension, and E,K being subfields of a common field implies
that KE/K ∈ C.

It is of course obvious from this definition that the class of algebraic (and finite) extensions
is distinguished.

8.2 Splitting Fields and Algebraic Closures

This section, like the previous, is based off of notes from lectures by Dr. Sujatha Ramdorai
and similar sections in [Lan05].

It should come as no surprise at this point in our studies that there is a deep connection
between the roots of polynomials and algebraic field extensions, and we dedicate this section
to studying this relationship. Let’s start with the basics.

Definition 8.2.1. Let K/F be a field extension, and p ∈ F [x]. We say that p splits com-
pletely over K if p is a product of linear factors in K[x].

Proposition 8.2.2. Every p ∈ F [x] splits completely over some field extension.

Proof. It suffices to show that for any irreducible polynomial p ∈ F [x] of degree at least two,
we can find a field extension where p has a root. By the proof of Theorem 3.9.8, F [x]/(p) is
a field. But of course evaluating in F [x]/(p), we get p([x]) = 0.

The above proof is a neat little sleight of hand, and also a good reminder that F [x]/(p) is
a field if and only if f is irreducible. It’s at this point that we start to use some category
theory1.

Definition 8.2.3. Let F be a field. The category of all field extensions of F , denoted
Extn(F ), is the category whose objects are fields extending F and morphisms field homo-
morphisms between extensions fixing F . We call these morphisms F -homomorphisms, and
denote them in the form HomF (K,E).

1We don’t have to, but the above chapter needs a purpose!
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Note. One needs to be careful about what exactly they mean by ”fixing” F . What this is
really saying is that the embedding of F in K is mapped to the embedding of F in E, and
the composite map F ↪→ K → E → F is the identity, where that last arrow is the inverse of
the embedding F ↪→ E.

Definition 8.2.4. Let F be a field. We say that F is algebraically closed if every polynomial
in F of degree at least one splits completely over F .

Before proceeding, we take a quick detour.

Definition 8.2.5. Let R be a commutative ring. An ideal I ⊊ R is called maximal if there
exists no ideal J ⊊ R such that I ⊊ J .

Lemma 8.2.6. Let R be a commutative ring and I ⊊ R an ideal. Then R/I is a field if and
only if I is maximal.

Proof. This follows immediately by noting that

1. Ideals in R containing I are in bijection with ideals in R/I.

2. R/I is a field if and only if its only two ideals are (0) and R/I.

Lemma 8.2.7. Let R be a commutative ring and I ⊊ R an ideal. I is contained in a maximal
ideal of R.

Proof. Let Σ be the set of ideals in R containing I except R, with partial order imposed by
inclusion. It is non-empty since I ∈ Σ. Let Ω ⊂ Σ be any totally ordered subset. It’s clear
that I =

⋃
J∈Ω J is an ideal in R, in particular an upper bound of Ω. We wish to show that

I ∈ Σ. If this were not the case, then I = R ⇒ 1 ∈ I. But this would imply that 1 ∈ J
for some J ∈ Ω, and hence that J is R, which is impossible. Hence, I ∈ Σ. The result then
follows by Zorn’s lemma.

Note. This also implies, by taking I = (0), that every commutative ring has a maximal ideal.

Alright, now back to field theory.

Proposition 8.2.8. Every field F has an algebraically closed field extension.

Proof. For each p ∈ F [x] of degree at least one, we write a letter xp. Let S = {xp}p∈F [x]
2, and

consider the ring F [S]. Specifically, we look at the ideal I ⊂ F [S] generated by {p(xp)}p∈F [x].
We first claim that I ̸= F [S]. Indeed, suppose it were. Then there would exist finitely
many distinct polynomials pi ∈ F [x], gi ∈ F [S] such that

∑n
i=1 gipi(xpi) = 1. By the above

proposition, we can find a field extension K/F such that each pi has some root αi ∈ K.
Applying the evaluation homomorphism to F [S] given by evaluating each xpi to αi and all
other variables to zero, we’d conclude that 0 = 1, which is impossible. Hence, I ̸= F [S], and
is therefore contained in some maximal ideal M ⊂ F [S]. K1 = F [S]/M is therefore a field in

2Abusing notation a bit here, technically it’s not indexed over all of F [x]

169



8.2. SPLITTING FIELDS CHAPTER 8. FIELDS AND GALOIS THEORY

which every polynomial p ∈ F [x] of degree at least one has a root, in particular [xp]. Applying
this process iteratively, we get an infinite tower of field extensions F ⊂ K1 ⊂ K2 ⊂ · · · , such
that each polynomial in Ki[x] of degree at least one has a root in Ki+1. Let K =

⋃n
i=1Ki.

It is not too difficult to check that K is a field, and one in which F is embedded and every
polynomial of degree at least one has a root. Since every polynomial in K[x] of degree at
least one has a root in K, it follows that every polynomial in K[x] splits completely over
K.

Note. Algebraically closed fields have no proper algebraic extensions.

Corollary 8.2.8.1. Every field F has an algebraic algebraically closed field extension.

Proof. Let K be an algebraically closed extension of F , and let {Ki}i∈I be all the sub-fields
of K which are algebraic extensions of F . Since the composite of two algebraic extensions
is algebraic, K ′ =

⋃
i∈I Ki is an algebraic extension of F , and is a sub-field of K. Pick any

p ∈ K ′[x]. Every root a of p is in K, and a is by definition algebraic over K ′, so by the
transitivity of algebraic extensions a is algebraic over F and hence a ∈ K ′. Thus, K ′ is
algebraically closed.

We call such algebraic algebraically closed field extensions algebraic closures of F , and the
above corollary guarantees their existence. We’ll work now towards proving their uniqueness.

Lemma 8.2.9. Let σ : F ↪→ L be a field embedding, where L is algebraically closed, and pick
any root a of a polynomial in F such that α /∈ F . Then there exists an extension τ of σ to
F (a), i.e. a field embedding τ : F (a) ↪→ L such that τ |F = σ. In particular, the number of
such extensions is equal to the number of distinct roots of σ(min(a, F )) in L.

Proof. Let p = min(a, F ). We know that F (a) ∼= F [x]/(p). Note that the field embeddings
of F [x]/(p) in L must all arise from field homomorphisms from F [x] to L which are zero on
(p). In particular, to extend σ, these homomorphisms must embed F in σ(F ). Every such
homomorphism is therefore just an evaluation homomorphism, and is entirely specified by
the image of x. In order for the homomorphism to be zero on (p), it must map x to a root
of σ(p) in L.

Theorem 8.2.10. Let σ : F ↪→ L be a field embedding, where L is algebraically closed, and
let E/F be an algebraic field extension. Then there exists an extension τ of σ to E, i.e. a
field embedding τ : E ↪→ L such that τ |F = σ.

Proof. Let S be the set of pairs (K, τ) where E/K/F is a tower of algebraic field extensions
and τ is an extension of σ to K. We can impose a partial order on this set by saying that
(K, τ) ≤ (K ′, τ ′) if K ⊂ K ′ and τ ′|K = τ . Note that (F, σ) ∈ S, so S is non-empty. Let
Σ ⊂ S be any totally ordered subset of S, say Σ = {(Ki, τi)}i∈I . Set K =

⋃
i∈I Ki, and

define τ : K ↪→ L by saying τ |Ki = τi. Note that K is a field, and τ is a well-defined field
embedding extending σ, so (K, τ) ∈ S. Furthermore, (K, τ) is clearly an upper bound for
Σ. Thus, by Zorn’s lemma there exists a maximal element (K, τ) ∈ S. We just need to
show now that K = E. If this were not the case, then we could find some a ∈ E\K. By
the previous lemma, τ extends to K(a), and hence so does σ. But (K, τ) is maximal, so we
conclude that K(a) = K ⇒ a ∈ K.
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Corollary 8.2.10.1. Any two algebraically closed, algebraic extensions of a field F are F -
isomorphic.

Proof. Let σ : F ↪→ L be the ”standard” embedding of F in an algebraically closed, algebraic
extension of F . Let K be some other algebraically closed, algebraic extension of F . Then σ
has a unique extension to K, which since K is algebraically closed must be bijective.

Since we only care about field extensions up to F -isomorphism, we can therefore refer to such
fields as the algebraic closure of F , which we denote F .

Definition 8.2.11. A splitting field for a non-unit polynomial p ∈ F [x] is an algebraic field
extension of F over which p splits completely, and which can be embedded into any other
such algebraic field extension.

Proposition 8.2.12. Every polynomial has a splitting field, and that splitting field is unique
up to F -isomorphism.

Proof. We start with existence. That there exists an algebraic field extension in which p
splits completely is clear. Now, suppose that K/F is any field extension over which p splits
completely. Let a1, . . . , an be the distinct roots of p in F . By Theorem 8.2.10, there exists
an extension of the standard embedding of F into F to K. By the proof of lemma 8.2.9, this
extension must map the roots of p in K to roots of p in F . Thus, we can invert to get an
embedding of F (a1, . . . , an) into K. This gives existence, uniqueness follows by noting that
field homomorphisms can be viewed as linear maps over F .

Again, this allows us to talk of the splitting field of a polynomial, which we denote Fp. We can
extend this to a family of polynomials in the obvious way, and note that the same theorem
applies as the splitting field of a family of polynomials {pi}i∈I is just

∏
i∈I Fpi .

8.3 Separable Extensions

This section is based off of notes from lectures by Dr. Sujatha Ramdorai, andsimilar sections
in [Lan05],[Jac09].

Definition 8.3.1. A polynomial p ∈ F [x] of degree at least one is separable if p has no
repeated roots. If K/F is a field extension, we say that a ∈ K is separable over F if it is
algebraic over F and min(a, F ) is separable. K/F is separable if every a ∈ K is separable
over F .

While this is the intuitive definition of separable extensions, it’s actually not the quickest
way to prove the things we want to about separable extensions. Therefore, we instead focus
on the separable degree of an extension. For this, we will need another result on algebraic
closures.

Theorem 8.3.2. Let E/F be an algebraic extension, and σ : F ↪→ L be an embedding of F
in the algebraic closure L of σ(F ). Let τ : F ↪→ L′ be an embedding of F in the algebraic
closure L′ of τ(F ). Set Sσ to be the number of extensions of σ to E, and define Sτ similarly.
Then |Sσ| = |Sτ |.
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Proof. Consider the isomorphism σ◦τ−1. By Theorem 8.2.10, this extends to an isomorphism
γ : L′ → L. Now, pick any extension ω of τ to E. Then γ ◦ ω is an extension of σ to E,
and since γ is bijective distinct extensions of τ lead to distinct extensions of σ under this
mapping. Furthermore, composing by γ−1, we can see that any such extension of σ arises in
this manner.

Because of this, |Sσ| depends only on the field extension E/F . We can then define the
separable degree of the extension, denoted [E : F ]s, to be this cardinality. Let’s get some
basic results on separable degree.

Proposition 8.3.3. Let E/K/F be a tower of algebraic extensions. Then

[E : F ]s = [E : K]s[K : F ]s

and if [E : F ] is finite then [E : F ]s ≤ [E : F ].

Proof. Starting with the first statement, let L be an algebraic closure of σ(F ), where σ :
F ↪→ L is an embedding. The first statement follows by noting that each extension of σ to E
can be written as an extension of σ to K, then extended to E, and that the number of such
second extensions is independent of the extension of σ chosen (as it is always an embedding).
For the second, we write can find some αi ∈ E such that

F ⊂ F (α1) ⊂ · · · ⊂ F (α1, . . . , αn) = E

Is a tower of field extensions. By lemma 8.2.9, each of these field extensions satisfies
[F (α1, . . . , αm) : F (α1, . . . , αm−1)]s ≤ [F (α1, . . . , αm) : F (α1, . . . , αm−1)]. The result then
follows by multiplicativity of separable and usual degree.

It turns out that there’s really no difference between separable degree and separable exten-
sions. To do this we’ll need to be a little careful, and start with finite extensions.

Theorem 8.3.4. Let K/F be a finite algebraic field extension. Then

1. K/F is separable if and only if [K : F ]s = [K : F ].

2. a ∈ K is separable over F if and only if F (a)/F is separable.

Proof. Note that by the same argument used to prove that [K : F ]s ≤ [K : F ], we need only
show that the first statement holds for K = F (a), for some a ∈ K. Suppose [F (a) : F ]s =
[F (a) : F ]. By lemma 8.2.9, [F (a) : F ]s is equal to the number of distinct roots of min(a, F ),
and we know that [F (a) : F ] = deg(min(a, F )). Thus, min(a, F ) must be separable, and
hence a is separable over F . That a is separable over F implies that [F (a) : F ]s = [F (a) : F ]
is also clear from this. Thus, we just need to show that a ∈ K being separable over F implies
that F (a)/F is separable. To that end, pick any b ∈ K. Then we get a tower of extensions
F (a)/F (b)/F , which satisfy

[F (a) : F ] = [F (a) : F (b)][F (b) : F ], [F (a) : F ]s = [F (a) : F (b)]s[F (b) : F ]s

If a is separable over F then it certainly is over F (b) as well, so it follows from this that
[F (b) : F ] = [F (b) : F ]s, and hence b is separable over F .
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To extend this equivalence to infinite extensions, we can use the following result.

Proposition 8.3.5. Let K/F be an algebraic field extension. Then it is separable if and only
if for every finite sub-extension L/F , where L ⊂ K, L/F is separable.

Proof. This follows immediately by noting that any a ∈ K is in some finite sub-extension,
namely F (a)/F , and that K is the union of all finite sub-extensions.

We’ll next prove that separable extensions are a distinguished class, but for this we’ll first
need a quick lemma.

Lemma 8.3.6. Suppose K/F is a field extension, and a ∈ K is algebraic over F . Then
min(a, F ) divides every polynomial in F [x] of which a is a root.

Proof. Suppose this were not the case. Set p = min(a, F ), and let g ∈ F [x] be a polynomial
of which a is a root such that p ∤ g. Then clearly deg(GCD(p, g)) < deg(p). But there exists
k, h ∈ F [x] such that pk + gh = GCD(p, g), and hence GCD(p, g) has a as a root. This
contradicts the minimality of deg(p).

Theorem 8.3.7. Separable extensions of a field F are a distinguished class of extensions.

Proof. First, suppose that E/K/F is a tower of separable field extensions. Pick any a ∈ E,
and let min(a,K) =

∑n
i=0 αix

i. Then F (a, α1, . . . , αn)/F (α1, . . . , αn)/F is a tower of finite
algebraic extensions, each of which is separable. That F (a, α1, . . . , αn)/F is separable, and
hence a is separable over F , follows by the Theorem 8.3.4 and proposition 8.3.3. Thus, E/F
is separable. Now, suppose that E/F is separable, and pick any a ∈ E. By lemma 8.3.6, a
is separable over K, and hence E/K is separable. K/F being separable is immediate.

Next, suppose that K,E are subfields of a common field, K/F is separable and E/F is a field
extension. By lemma 8.3.6, every element of K is separable over E, and hence for any a ∈ K
we get that E(a)/E is separable. Repeating this argument, we conclude that by proposition
8.3.5 that EK/E is separable. If E/F is also separable, then by the first part of the proof
EK/F is separable.

We now move on to studying when such separable extensions exist. Let’s begin with the
notion of a separable closure.

Definition 8.3.8. Let F be a field, and F ⊂ K ⊂ F a field extension. We say that K is
separably closed if every separable extension of F can be F -embedded in K.

Proposition 8.3.9. Every field F has a separably closed extension, which is unique up to
F -isomorphism.

Proof. For existence, we simply note that by Theorem 8.3.7 the composition of all separable
extensions of F is separable. The uniqueness is then clear from the definition.

We call this ”unique” field the separable closure of F , denoted F sep. We’ll come back to
these later.
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Definition 8.3.10. A field F is called perfect if every algebraic extension of F is separable.

It turns out that most fields are perfect! In order to show this, we’ll need to take a bit of a
detour.

Definition 8.3.11. Let R be a ring, and p(x) =
∑n

i=0 aix
i a polynomial in R[x]. The

derivative of the polynomial is

p′(x) =
n∑
i=1

iaix
i−1

where we define multiplication by integers using the standard ring inclusion Z ↪→ R given by
mapping 1 in Z to 1 in R.

It is not too hard to verify that R is a linear map from R[x] to itself, just as we’d expect, and
satisfies the usual product rule from calculus. It also has some more properties that we’d
expect.

Proposition 8.3.12. Suppose F is algebraically closed. Then p(x) ∈ F [x] of degree at least
1 is separable if and only if GCD(p, p′) = 1.

Proof. The above statement is equivalent to saying that p is separable if and only if p, p′

share no roots. Indeed, since F is algebraically closed we can factor p to get

p(x) = (x− α1)(x− α2) · · · (x− αn)

where αi ∈ F are the (possibly non-distinct) roots of p. This, in turn, gives

p′(x) =
n∑
i=1

∏
j ̸=i

(x− αj)

If αi is not a repeated root, then

p′(αi) =
∏
j ̸=i

(αi − αj) ̸= 0

Otherwise, there is a factor (x − αi) in each term of the sum, and hence αi is a root of p′.
The result follows from this.

Lemma 8.3.13. Suppose F is a field, K/F a field extension, and p, q ∈ F [x]. Then
GCD(p, q) is the same in F [x] and K[x].

Proof. Suppose (GCD)(p, q) = r in F [x]. Let k, h ∈ F [x] be the polynomials such that
p = kr, q = hr. It suffices to show that k, h are coprime in K[x]. Hence, it suffices to
show that the leamma holds in the case where GCD(p, q) = 1. Assume this. Then there
exist h, k ∈ F [x] such that ph + qk = 1. Thus, (p, q) = (1) in K[x] as well, completing the
proof.

Corollary 8.3.13.1. p ∈ F [x] is separable if and only if GCD(p, p′) = 1.
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Definition 8.3.14. Let F be a field. The character of a field, denoted char(F ), is the
smallest n ∈ N such that

∑n
i=1 1 = 0 in F . If no such F exists, we write char(F ) = 0.

Proposition 8.3.15. If char(F ) ̸= 0, then char(F ) is prime.

Proof. Let φ : Z ↪→ F be the standard ring inclusion given by mapping 1 in Z to 1 in F .
Note that n = char(F ) if and only if ker(φ) = (n). Also, one can note that φ(Z) is a subfield
of F . Since φ(Z) ∼= Z/(n), (n) must be maximal and hence n must be prime.

Proposition 8.3.16. If char(F ) = 0, then F is perfect.

Proof. It suffices to show that every irreducible polynomial f ∈ F [x] is separable. Indeed,
write f(x) =

∑n
i=0 aix

i. Then deg(f ′) < deg(f), f ′ ̸= 0, and hence since f is irreducible it
must be coprime to f ′. The result then follows from lemma 8.3.13.

Lemma 8.3.17. If char(F ) = p and a ∈ F , then xp − a is either irreducible or has one root
of multiplicity p in F .

Proof. Let f(x) = xp − a, and let b ∈ F be any root of f . Suppose that f is reducible.
Since bp = a, (x − b)p = xp − a. Thus, the only possible factors of f are powers of (x − b).
In particular, we can assume without loss of generality that ∃0 < k < p such that bk ∈ F .
Furthermore, since p is prime, there exists q, r ∈ Z such that qk + pr = 1. Thus, since
(bk)a(bp)r ∈ F , we conclude that b ∈ F , and hence f(x) = (x− b)p in F [x].

Proposition 8.3.18. If char(F ) = p, then F is perfect if and only if F p = F .

Proof. If F is perfect, then every irreducible polynomial in F must be separable. Hence,
by the above lemma every polynomial of the form xp − a cannot be irreducible. Thus,
there exists for every a ∈ F some b ∈ F such that bp = a, and therefore F p = F . Now,
suppose that F p = F , and pick any irreducible f ∈ F [x]. Suppose f is not separable. Then
GCD(f, f ′) ̸= 1, and hence by the proof of proposition 8.3.16 every non-zero term in f must
be of the form akpx

kp, where k ∈ N. Write

f(x) =
n∑
k=0

akpx
kp

Suppose for each akp there exists a bk ∈ F such that bpk = akp. Then we get

f(x) =
n∑
k=0

bpkx
kp =

( n∑
k=0

bkx
k
)p

which again is impossible. Thus, there exists some akp ∈ F which is not in F p, a contradiction,
and hence f must be separable.

Corollary 8.3.18.1. If char(F ) = p, then for every irreducible non-trivial f ∈ F [x] there
exists an irreducible, separable g ∈ F [x] and some k ∈ N ∪ {0} such that f(x) = g(xp

e
).
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Proof. If f is separable, then we’re done. Otherwise, by the proof of the previous proposition,
we know that f can be written in the form

f(x) =
n∑
k=0

akx
kp

Set g(x) =
∑n

k=0 akx
k. Then f(x) = g(xp). Repeating this process, we get the desired

result.

Note. Not every field is perfect!

Definition 8.3.19. Let K/F be a field extension. The extension is called simple if there
exists some a ∈ K such that K = F (a). In this case, we call a a primitive element of K over
F .

Theorem 8.3.20. A finite field extension K/F is simple if and only if there exist a finite
number of subfields of K containing F .

Proof. First, suppose that F is finite. Then by the Theorem 3.10.2 K× is cyclic, and from
which the desired result immediately follows. Thus, we assume that F is infinite.

Suppose that K has only a finite number of subfields containing F . We proceed by induction
to prove the claim that, for any a1, . . . , an ∈ K, there exist c2, . . . , cn ∈ F such that

F (a1, . . . , an) = F (a1 + c2a2 + · · ·+ cnan)

The base case of n = 1 is clear. Now, pick any a1, . . . , an ∈ K, and assume that the result
holds for n− 1. Then there exist c2, . . . , cn−1 ∈ F such that

F (a1, . . . , an−1) = F (a1 + c2a2 + · · ·+ cn−1an−1)

Furthermore, the set {F (a1+ c2a2+ · · ·+ cn−1an−1+ cnan)}ncn∈F must be finite. Thus, there
exist distinct cn, c

′
n ∈ F such that

F (a1 + c2a2 + · · ·+ cn−1an−1 + cnan) = F (a1 + c2a2 + · · ·+ cn−1an−1 + c′nan)

In particular, this implies that

an(cn − c′n) ∈ F (a1 + c2a2 + · · ·+ cn−1an−1 + cnan)

and hence

an, a1 + c2a2 + · · ·+ cn−1an−1 ∈ F (a1 + c2a2 + · · ·+ cn−1an−1 + cnan)

Thus, we conclude that

F (a1, . . . , an) = F (a1 + c2a2 + · · ·+ cn−1an−1, an) = F (a1 + c2a2 + · · ·+ cn−1an−1 + cnan)

as required. Since K/F is finite, it follows from this that K/F is simple.
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Now, suppose K/F is simple, say K = F (a). Let p = min(a, F ), and let E be an extension
of F contained in K. Let q = min(a,E). Then by lemma 8.3.6, q | p, so since E[x] is a UFD
there exists a unique h ∈ E[x] such that p = qh. Any polynomial dividing p must be equal to
a product of expressions of the form (x, α), where α is a root of p, and there are only finitely
many such polynomials. Hence, we get a finite number of options for q. But K = E(a), so
E ∼= K[x]/(q), and hence there are only finitely many such E.

Theorem 8.3.21 (Primitive Element). Every finite separable extension of a field F is simple.

Proof. We can note from the above proof that every finite extension of a finite field is simple,
and hence assume that F is infinite. Using the same argument as in the infinite case above,
it suffices to show that if K/F is separable and finite and a, b ∈ K, then F (a, b) is simple.
If F (a, b) = F this is obvious, so assume this is not the case. Let σ1, . . . , σn be the F -
embeddings of F (a, b) in F sep. Note that by separability and lemma 8.2.9, n = [F (a, b) : F ].
Define a polynomial p ∈ F [x] by

p(x) =
∏
i ̸=j

(σi(a) + σi(b)x− σj(a)− σj(b)x)

Note that since n ≥ 2, p ̸= 0, and hence there exists by Theorem 3.10.1 some c ∈ F such that
p(c) ̸= 0. That is, each σi(a + cb) must be distinct, so by lemma 8.2.9 [F (a + cb) : F ] = n.
Thus, since a+ cb ∈ F (a, b), F (a, b) = F (a+ cb).

8.4 Normal Extensions

This section is based off of notes from lectures by Dr. Sujatha Ramdorai, along with a similar
section from [Lan05].

Definition 8.4.1. An algebraic field extension K/F is called normal if every irreducible
polynomial of F [x] with a root K has all of its roots in K.

Normality turns out not to be transitive (and hence Normal extensions do not form a distin-
guished class), but we do get a slightly weaker condition.

Proposition 8.4.2. Let L/K/F be a tower of algebraic extensions. If L/F is normal, then
L/K is normal.

Despite this, it turns out that Normal extensions are intimately connected with splitting
fields.

Theorem 8.4.3. Let K/F be an algebraic field extension, where K ⊂ F . Then the following
are equivalent.

1. K/F is normal.

2. K is the splitting field of a family of polynomials in F [x].

3. Every embedding K ↪→ F induces an automorphism of K.
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Proof. First, suppose that (iii) holds. Pick any a ∈ K, and let p = min(a,K). If b ∈ F is
a root of p, then there exists an F -isomorphism τ : F (a) → F (b) such that τ(a) = b (as p
is irreducible). By Theorem 8.2.10, this can be extended to an F -embedding τ : K ↪→ F ,
which by (iii) must be an isomorphism on K. Hence, every root of p must be in K, and so
K/F is normal. Now, suppose that K/F is normal. Then K is clearly the splitting field of
all irreducible polynomials in F [x] with a root in K, so (ii) holds. Finally, suppose that K is
the splitting field of {fi}i∈I ⊂ F [x]. Let τ : K ↪→ F be an embedding. Then τ(K) is another
splitting field of {fi}i∈I so by the infinite version of proposition 8.2.12 τ : K → τ(K) is an
F -isomorphism. Since K, τ(K) ⊂ F and thus contain the same roots of polynomials in our
family, it follows that τ is an automorphism.

Using this, we can show that normal extensions aren’t that poorly behaved.

Proposition 8.4.4. Let K/F,E/F be a pair of normal extensions, where K,E ⊂ L are
contained in some common field. Then KE/F and (K ∩ E)/F are both normal.

Proof. By Theorem 8.4.3, each of K,E is the splitting field of a family of polynomials in
F [x]. KE is just the splitting field of the union of those two families, and hence is normal
over F . Now suppose that f ∈ F [x] has a root in K ∩ E. Then it has a root in K, so all of
its roots are in K, and the same with E. Hence, all of its roots are in K ∩ E.

There’s one last result I’d like to mention here which can be useful.

Proposition 8.4.5. Every algebraic extension is contained in a normal extension.

Proof. Suppose K/F is algebraic. Then the desired normal extension is just the splitting
field of {min(a, F )}a∈K .

8.5 Purely Inseparable Extensions

This section is based off of lectures by Dr. Sujatha Ramdorai and a similar section in [Lan05].

We have already spent substantial time characterizing separable extensions. In this section,
we try to expand this to include all algebraic extensions, and will discover that algebraic
extensions are formed by a separable and purely inseparable extension. Since every field of
characteristic zero is perfect, we assume for this section that our fields are not perfect and
are of characteristic p.

Definition 8.5.1. Let K/F be an algebraic extension. We call a ∈ K purely inseparable
over F if there exists some n ∈ N such that ap

n ∈ F . K/F is purely inseparable if every
a ∈ K is purely inseparable over F .

Theorem 8.5.2. Let F be a field, and f ∈ F [x] an irreducible polynomial. Then all the roots
of f have the same multiplicity, which is pk for some k ∈ N ∪ {0} if char(F ) = p.

Proof. By corollary 8.3.18.1 there exists some separable irreducible g ∈ F [x] and k ∈ N∪{0}
such that f(x) = g(xp

k
). Thus, it suffices to consider polynomials of the form xp

k − a, where
a ∈ F . But in F , xpk − a = (x− a1/pk)pk , so our single root a1/p

k
has multiplicity pk.
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Corollary 8.5.2.1. Let K/F be an algebraic extension, and pick any a ∈ K. Let f =
min(a, F ), and let g ∈ F [x] be the separable irreducible polynomial such that f(x) = g(xp

k
),

for some k ∈ N ∪ {0}. Then [F (a) : F ]s = deg(g), [F (a) : F ] = pk[F (a) : F ]s, and a
pk is

separable over F .

Proof. If a ∈ F this is trivial, so assume that a /∈ F . By lemma 8.2.9, [F (a) : F ]s is equal to
the number of distinct roots of f , which is precisely deg(g). Thus, since [F (a) : F ] = deg(f),
we get the first two results. The third is just a restatement of Theorem 8.5.2.

The above result also shows that [F (a) : F ]s | [F (a) : F ], and hence by the multiplicity of
separable and total degree we get [K : F ]s | [K : F ] for any finite extension K/F . We call
[K : F ]/[K : F ]s = [K : F ]i the inseparable degree, which it follows is also multiplicative. It
is also clear that K/F is separable if and only if [K : F ]i = 1.

Theorem 8.5.3. Let K/F be an algebraic field extension. Then the following are equivalent.

1. [K : F ]s = 1.

2. K/F is purely inseparable.

3. Every a ∈ K has a minimal polynomial of the form xp
k − b in F [x].

4. K is generated by a set of purely inseparable generators over F .

Proof. First, suppose that (i) holds. Then in particular we must get [F (a) : F ]s = 1 for any
a ∈ K, and hence the minimal polynomial of a over F is of the form xp

k − b, where b ∈ F .
Thus, ap

k ∈ F and K/F is purely inseparable. Now, suppose that K/F is purely inseparable.
Then for any a ∈ K, there exists some b ∈ F and minimal k ∈ N∪{0} such that p(x) = xp

k−b
has a as a root. Hence, min(a, F ) | p. But by the proof of Theorem 8.5.2, p has only one
root, and hence by corollary 8.5.2.1 we get deg(min(a, F )) = pk. Thus, min(a, F ) = xp

k − b,
proving (iii). Suppose that (iii) holds. Then clearly every a ∈ K is purely inseparable over
F , and hence any set of generators for K will be, so (iv) holds. Finally, suppose that (iv)
holds. Let {ai}i∈I be a set of purely inseparable generators for K over F . Any extension of
an embedding of F in F to K is fully specified by where it sends each ai. But each ai must
be sent to another root of min(ai, F ), and by a previous part of this proof each of these has
one root, so there is exactly one such extension and [K : F ]s = 1.

Proposition 8.5.4. The class of purely inseparable extensions of a field F is distinguished.

Proof. The condition on towers follows immediately from the multiplicativity of insepara-
ble/separable degrees and (i) in Theorem 8.5.3. Now, suppose that K/F is an inseparable
extension and E/F a field extension. By Theorem 8.5.3, there exist a set of purely insepa-
rable generators {ai}i∈I for K over F . Since KE = E({ai}i∈I), it suffices to show that each
ai is purely inseparable over E. By Theorem 8.5.3, min(ai, F ) = xp

k − b for some b ∈ F .
Then since min(ai, E) | min(ai, F ), min(ai, E) has exactly one root. By Theorem 8.5.2 that
root must have multiplicity pk

′
for some k′ ∈ N ∪ {0}, and hence min(ai, E) is of the desired

form.
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Theorem 8.5.5. Let K/F be an algebraic field extension. Let L be the composite of all
subfields of K which are separable extensions of F . Then L/F is separable, and K/L is
purely inseparable.

Proof. That L/F is separable is immediate from separable extensions being a distinguished
class. Now, suppose that a ∈ K. By assumption, a cannot be separable over L. Let g be
the separable, irreducible polynomial in L[x] such that min(a, L)(x) = g(xp

k
). Then ap

k
is a

root of g in K, and hence since g is separable ap
k ∈ L. Thus, K/L is purely inseparable.

Corollary 8.5.5.1. An algebraic extension K/F is separable and purely inseparable if and
only if K = F .

Corollary 8.5.5.2. Let K,L be finite extensions of F , with K/F purely inseparable, L/F
separable, and L,K subfields of a common field. Then

[KL : K] = [L : F ] = [KL : F ]s

[KL : L] = [K : F ] = [KL : F ]i

Proof. KL/K is separable, and K : F is purely inseparable, so [KL : F ]s = [L : F ] = [KL :
K]. Furthermore, L/F is separable and KL/L is purely inseparable, so [KL : L] = [K :
F ] = [KL : F ]i.

It is worth asking whether our decomposition can be done in the other way, that is whether
we can decompose an algebraic field extension into a purely inseparable followed by separable
extension. The answer is, in general, no, but there is a special case where we can do this
which can be found in [Lan05].

8.6 Finite Fields*

This section closely follows the same section in [Lan05], which I find to be an excellent,
systematic, and thorough piece of exposition.

The point of this section is to demonstrate that we can precisely describe, up to isomorphism,
all finite fields. This isn’t explicitly needed in any of the later parts of this book, but it’s the
sort of information that tends to crop up and be useful when you least expect it to.
As was observed in section 8.3, every field of characteristic p can have the field Fp = Z/pZ
embedded into it, and hence every finite field of characteristic p is an extension of Fp. In
fact, it turns out that these extensions are generated by a very select set of polynomials.

Theorem 8.6.1. Let p be a prime number, and n ≥ 0. Then the subset of Fp consisting of
roots of the polynomial xp

n − x is a field, in particular the splitting field of xp
n − x, and is

of size pn. Furthermore, any finite field of character p is isomorphic to some such splitting
field.

Proof. We start by showing that the subset S ⊂ Fp consisting of the roots of the polynomial
xp

n −x is a field. That 0, 1 ∈ S is clear. Now, suppose that a, b ∈ S. Then (ab)p
n
= ap

n
bp
n
=
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ab, so ab ∈ S. Furthermore, (a + b)p
n
= ap

n
+ bp

n
= a + b, so a + b ∈ S. We finish off by

noting that if a ̸= 0, (a−1)p
n
= (ap

n
)−1 = a−1 and (−a)pn = (−1)pnapn = −a, so multiplicative

and additive inverses are present. Thus, S is a field. Furthermore, if f(x) = xp
n − x then

f ′(x) = −1, and hence f is separable, from which it follows that |S| = pn as claimed. Finally,
suppose that K is any other field of character p. Since K is a vector space over Fp, |K| = pn

for some n ∈ N∪{0}. Furthermore, ap
n−1 = 1 for any non-zero a ∈ K. Thus, K is isomorphic

to the splitting field of xp
n − x.

We denote this unique (up to isomorphism) field of order pn by Fpn . We also get the fairly
immediate consequences

Corollary 8.6.1.1. Any degree m extension of Fpn is isomorphic to Fpnm. Furthermore,
every finite extension of a finite field is normal.

The last thing of interest here is that finite fields have a very simple structure on their group
of automorphisms. Indeed, let K be a finite field of characteristic p. We define the Frobenius
Automorphism on K by φ(a) = ap. Note that this is bijective since K is finite and φ is an
injective vector space homomorphism, and hence φ is indeed a field automorphism. There’s
actually an immediate consequence of this observation as well.

Proposition 8.6.2. Every finite field is perfect.

However, this isn’t the point at the moment. We’re more interested in the following result.

Theorem 8.6.3. Let F be a finite field of characteristic P . Then the group of
F -automorphisms of the degree-n extension K of F is cyclic of order n, and generated by φn.

Proof. Pick any τ ∈ AutF (K). Since F is the splitting field of xp
m − x, where |F | = pm, τ

must fix every root of xp
m − x. Since K× is cyclic, τ is entirely defined by where it sends a

generator of K×. That is, if a ∈ K is our generator, we get τ(a) = ar for some r ∈ N ∪ {0}.
Thus, τ(b) = br for any b ∈ K. But of course F× is cyclic of order pm − 1, so since τ fixes
F we require r = km for some k ∈ N. Furthermore, since K× is cyclic of order pnm − 1 we
get that each pkm produces a different automorphism for 1 ≤ k ≤ n, and τ = IdK for k = n,
from which the result follows.

8.7 Galois Extensions

This section is based off of lectures by Dr. Sujatha Ramdorai and a similar section in [Lan05].

Let’s start with our two fundamental definitions.

Definition 8.7.1. A field extension K/F is Galois if it is algebraic, separable, and normal.

Note. Since normal extensions are not a distinguished class, neither are Galois extensions.

Definition 8.7.2. The Galois group of a field extension K/F is the group

Gal(K/F ) = AutF (K)
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Note. IfK/F is algebraic, then Gal(K/F ) can also be viewed as all extensions of the standard
embedding of F into F to K, that is all F -embeddings of K in K.

Galois theory is all about relating the properties of field extensions to those of their Galois
groups. Doing so requires building up a lot of machinery, which we begin to do now.

Definition 8.7.3. Let F be a field and G a subgroup of Aut(F ). The subset of F fixed by
G, which we denote FG, is called the fixed field of G.

It is not too difficult to show that the fixed field is, in fact, a field.

Proposition 8.7.4. Let K/F be a Galois extension, and set G = Gal(K/F ). Then F = KG.
Furthermore, the map L → Gal(K/L) from intermediate field extensions F ⊂ L ⊂ K to
subgroups of G is injective.

Proof. Suppose that a ∈ KG. Since F ⊂ F (a) ⊂ K and K/F is separable, F (a)/F is
separable. That is, [F (a) : F ]s = [F (a) : F ]. But F (a) cannot have a non-trivial F -
automorphism, as this could then be extended to an F -automorphism of K not fixing a, and
hence [F (a) : F ]s = 1⇒ a ∈ F . That F ⊂ KG is clear, so F = KG.

Now, suppose that F ⊂ L ⊂ K is an intermediate extension. Then K/F being normal,
separable, and algebraic implies that K/L is as well, and hence K/L is Galois. Thus, if
H = Gal(K/L) ⊂ G, then KH = L. Injectivity follows from this.

Note. We say that H belongs to L if H = Gal(K/L), and that L is associated to H.

Corollary 8.7.4.1. Let K/F be Galois, with Gal(K/F ) = G, and let L,E be two interme-
diate field extensions with subgroups H,R belonging to them respectively. Then

1. H ∩R belongs to LE.

2. The fixed field of the smallest subgroup of G containing H,R is L ∩ E.

3. L ⊂ E if and only if R ⊂ H.

Proof. The first item follows by noting that K/LE is Galois, if an automorphism of K fixes
L and E then it fixes LE, and if an automorphism of K fixes LE then it fixes L and E. The
second comes from noting that any element of a subgroup generated by H,R must fix L∩E,
and vice-versa. The third is also immediate.

Proposition 8.7.5 (Artin). Let K be a field and G a finite group of automorphisms of K.
Then K is a finite Galois extension of KG and |G| = [K : KG].

Proof. Pick any a ∈ K. Let σ1, . . . , σn ∈ G be a maximal set such that σ1(a), . . . , σn(a) are
distinct. Pick any other τ ∈ G. Then since τ is injective, (τ ◦ σ1)(a), . . . , (τ ◦ σn)(a) must
be a permutation of σ1(a), . . . , σn(a), as otherwise σ1, . . . , σn would not be minimal. Define
a polynomial

p(x) =
n∑
i=1

(x− σi(a))
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Then p is fixed under G, and hence p ∈ KG[x]. Furthermore, p is separable, and has a as a
root as otherwise IdK(a) would be distinct contradicting the minimality of the σi(a). Since
a was arbitrary, it follows that K/KG is Galois with Galois group G. As K/KG is separable,
G being finite further implies that K/KG is finite. K/KG is therefore simple, and hence by
the Dedikind’s lemma [K : KG] = |G|.

Corollary 8.7.5.1. Let K/F be a finite Galois extension. Then each subgroup of Gal(K/F )
is associated to an intermediate extension of K/F .

Proposition 8.7.6. Let K/F be a normal extension, and set G = Gal(K/F ). Let L be an
intermediate field extension, and set H = Gal(K/L). Then

1. H �G if and only if L/F is normal.

2. If L/F is normal, then Gal(L/F ) ∼= G/H.

Proof. 1. First, suppose that L/F is normal. Then L is the splitting field of a family
of polynomials in F [x], and any F -automorphism of L can be specified entirely by
permuting the roots of these polynomials. Pick any σ ∈ H, τ ∈ G. Since τ fixes F ,
it fixes any polynomial in F [x]. Thus, τ can only act on L by permuting roots in
that same family of polynomials, making τ restrict to an F -automorphism of L. It
follows that τ ◦ σ ◦ τ−1 ∈ H, and hence H � G. Now, suppose that H � G. Let
F = {min(a, F )}a∈L. Our goal will be to show that L is the splitting field of F , and
hence that L/F is normal. It is clear that any field over which F splits must contain
L, so we need only show that F splits over L. Suppose this were not the case, that is
there existed some a ∈ L such that min(a, F ) had some root b ∈ K which was not in
L. We could then find an F -automorphism σ : K → K such that σ(a) = b. Note that
min(a, F ) must have some other root c ∈ K\{b} which is not in L, as otherwise we’d
conclude that b ∈ K. We can find some τ ∈ H such that τ(b) = c. Then we’d get

(σ−1 ◦ τ ◦ σ)(a) = σ−1(c) ̸= a⇒ σ−1 ◦ τ ◦ σ /∈ H ⇒ H ̸ �G

as claimed.

2. Now, suppose that L/F is normal. Define a homomorphism q : G → Gal(L/F ) by
restriction, that is q(σ) = σ|L. That it has the claimed codomain follows from L/F
being normal, as we saw in the previous part this implies that every element of G
restricts to an F -automorphism of L. That ker(q) = H is clear, as is that q is surjective
since K/L is normal. The desired result follows from this.

We can combine all these observations into one large, fundamental result.

Theorem 8.7.7 (Fundamental Theorem of Finite Galois Theory). Let K/F be a finite Galois
extension, and set G = Gal(K/F ). Then

1. |G| = [K : F ].
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2. There is a bijective correspondence between subgroups H ⊂ G and intermediate field
extensions L, given by L = KH .

3. L/F is normal if and only if H �G, and in this case Gal(L/F ) ∼= G/H.

Essentially, all the information about Galois extensions is contained in their Galois
groups.

Note. This theorem does not hold for infinite Galois extensions, but there is an analogue of
it [Lan05].

Corollary 8.7.7.1. Let K/F be a Galois extension. We say that the extension is Abelian
(cyclic) if Gal(K/F ) is Abelian (cyclic). If K/F is Abelian (cyclic), then every intermediate
field extension is also Galois and Abelian (cyclic) over F .

8.8 Properties of Galois Extensions

This section is based off of lectures by Dr. Sujatha Ramdorai and a similar section in [Lan05].
In it, we go over a collection of useful properties and facts about Galois extensions.

Lemma 8.8.1 (Dedikind). Let F be a field and σ1, . . . σn ∈ Aut(F ) distinct. Then these
automorphisms are linearly independent over F .

Proof. Suppose this was false. Then, without loss of generality, there would be some minimal
m and coefficients αi ∈ K such that

∑m
i=1 αiσi = 0. Clearly we need for m ≥ 2, and so since

these automorphisms are distinct there exists some non-zero u ∈ K such that σ1(u) ̸= σm(u).
Note that any non-zero element of K can be written in the form cu for some non-zero c ∈ K,
and

m∑
i=1

αiσi(cu) = 0,
m∑
i=1

αiσ1(u)σi(c) = 0

Thus,
m∑
i=2

αi(σ1(u)− σi(u))σi(c) = 0

Since σ1(u)− σm(u) ̸= 0, this would make m non-minimal, a contradiction.

Theorem 8.8.2. Let K/F be a finite field extension. Then |Gal(K/F )| ≤ [K : F ].

Proof. Let n = [K : F ], and suppose there existed distinct σ1, . . . , σn+1 ∈ Gal(K/F ). By
Dedikind’s lemma these would be algebraically independent. Furthermore, since K is an
n-dimensional F -vector space, we find an F -basis {k1, . . . , kn} for K. Consider the set of
linear equations in n+ 1 unknowns x1, . . . , xn+1 given by

x1σ1(k1) + · · ·+ xn+1σn+1(k1) = 0
...

x1σ1(kn) + · · ·+ xn+1σn+1(kn) = 0
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A solution to this would imply that the σi are linearly dependent. But of course this is a
system of n linear equations with n + 1 unknowns, so a solution exists, contradicting our
assumption that the σi were distinct.

The other results I will simply state, as I don’t find their proofs particularly interesting or
enlightening. If you would like to see the proofs, see section 6.1 in [Lan05].

Proposition 8.8.3. Let K/F be Galois, and L/F some other field extension such that K,L
are contained in some common field. Then KL/L,K/(K∩L) are Galois, and Gal(KL/L) ∼=
Gal(K/(K ∩ L)), with the isomorphism being the expected restriction map. Furthermore, if
K/F is finite, then [KL : L] | [K : F ].

Proposition 8.8.4. Let K1, . . . , Kn be Galois extensions of F . Then K1 · · ·Kn/F is Galois.
Furthermore, if Kj ∩

∏
i ̸=jKi = F for any j and Gi = Gal(Ki/F ), then

Gal(K1 · · ·Kn/F ) ∼= G1 × · · · ×Gn

Finally, if K/F is a finite Galois extension such that Gal(K/F ) = G1×· · ·×Gn, and we set
Ki to be the fixed field of

∏
j ̸=iGj, then the Ki meet the above conditions and

∏n
i=1Ki = K.

Note. The second part of this proposition gives us a way of decomposing finite Galois exten-
sions into simpler ones. In particular, any finite Abelian Galois extension can be decomposed
into the composite of cyclic Galois extensions.

Proposition 8.8.5. Let K,L be field extensions of F contained in a common field, and E
an intermediate extension of K/F . Then

1. If K,L are Abelian over F , then KL/F is Abelian.

2. If K/F is Abelian, then KL/L is Abelian.

3. If K/F is Abelian, then K/E,E/F are Abelian.

Note that this last proposition implies that the composition of all Abelian extensions of F is
Abelian over F , and hence that there exists an Abelian closure of F . We denote this by F ab.

8.9 Norm and Trace

This section is a re-organization of a similar one in [Lan05].

We begin with the basic definitions.

Definition 8.9.1. Let K/F be a finite field extension, and for any a ∈ K let Ta : K → K
be the F -linear map x 7→ ax. We define the norm and trace of a over F to be NK

F (a) =
det(Ta),Tr

K
F (a) = Tr(Ta) respectively.

These quantities are of interest precisely because they turn out to relate to F -automorphisms
of K.
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Proposition 8.9.2. Let K/F be a finite field extension, with [K : F ]s = n, [K : F ]i = m.
Let σ1, . . . , σn : L ↪→ F be the distinct F -embeddings of K in F . Then for any a ∈ K

NK
F (a) =

( n∏
i=1

σi(a)
)m

TrKF (a) = m

n∑
i=1

σi(a)

Proof. First, we justify there being exactly n distinct F -embeddings of K in F 3. By Theo-
rem 8.5.5, there exists some intermediate field F ⊂ L ⊂ K such that K/L is purely insepara-
ble and L/F is separable. Then every extension of IdF to K arises from exactly one extension
of IdF to L, of which there are n. By Theorem 8.3.21, L/F is simple, and hence there exists
some b ∈ L such that L = F (b). Since any extension of IdF to L is entirely defined by its
action on b, it follows that all the roots of min(b, F ) are in L and that each σi is just mapping
b to a distinct root of min(b, F ). We can extend σi from L to K by just having it act as
the identity on each new element we add on, and each σi can only be extended from L to K
in one manner. Since every F -embedding of K in F must arise in this manner, there are n
distinct such F -embeddings.

Now, we consider the map Ta. Let min(a, F ) = xr +
∑r

j=1 αjx
r−j. We know that {1, a, . . . ,

ar−1} is an F -basis for F (a). Let {vj}ℓj=1 be a basis for K over F (a), where we note that
ℓ = nm/r. Then by the proof of proposition 8.1.3,

{aivj | 0 ≤ i ≤ r − 1, 1 ≤ j ≤ ℓ}

is a basis for K over F . In this basis, the matrix for Ta would be block-diagonal, with blocks
of the form 

0 0 0 · · · 0 −αr
1 0 0 · · · 0 −αr−1

0 1 0 · · · 0 −αr−2
...

. . . . . . . . .
...

...
0 0 0 · · · 1 −α1


where we’ve ordered here by i then j, each in ascending order4. The determinant of each of
these blocks is (−1)rαr, and there are ℓ blocks, so det(T ) = (−1)nmαℓr. Similarly, the trace
of each block is −α1, so Tr(T ) = −ℓα1. We split now into two cases.

Case 1: Suppose that K/F is separable. As noted above, each σi : F (a) ↪→ F is just
mapping a to one of the r distinct root of min(a, F ). Furthermore, by the separability of
K/F (a), each of the said extensions then has ℓ extensions to an F -embedding of K. Thus,
if a = a1, a2, . . . , ar are the roots of min(a, F ), then

n∏
i=1

σi(a) =
( r∏
i=1

ai

)ℓ
= ((−1)rαr)ℓ = (−1)nαℓr = NK

F (a)

n∑
i=1

σi(a) = ℓ

r∑
i=1

ai = −ℓα1 = TrKF (a)

3Perhaps unnecessary, but I like how it makes this proof stand alone.
4You may recognize this as the rational canonical form of Ta. That is, this also implies that the invariant

factors of Ta are just copies of the minimal polynomial of a over F
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as claimed.

Case 2: Suppose that K/F is not separable. Let p = char(F ), where p is prime and non-
zero. By corollary 8.3.18.1, there exists some separable irreducible g ∈ F [x] such that
min(a, F )(x) = g(xp

z
), for some z ≥ 0. Again, each σi : K ↪→ F can be thought of as

arising from some extension of IdF to F (a). As noted above, each of these extensions is just
mapping a to one of the q = deg(g) = r/(pz) = [F (a) : F ]s distinct root of min(a, F ). Each
of the said extensions then has [K : F (a)]s extensions to an F -embedding of K. Thus, if
a = a1, a2, . . . , aq are the roots of min(a, F ), then

( n∏
i=1

σi(a)
)m

=
( q∏
i=1

ai

)m[K:F (a)]s
=

( q∏
i=1

ai

)nm/q
=

( q∏
i=1

ap
z

i

)nm/r
=

(
(−1)qαr

)ℓ
= (−1)ℓqαℓr = (−1)nmαℓr

as claimed. The last step works because raising (−1) to the exponent any non-zero power of
p gives (−1) in F . Finally, we get

m
n∑
i=1

σi(a) = m[K : F (a)]s

q∑
i=1

ai =
m[K : F (a)]s

pz

q∑
i=1

pzai = −[K : F (a)]α1 = −ℓα1

as claimed.

Corollary 8.9.2.1. Let K/F be a finite field extension. For any a ∈ K, let min(a, F ) =
xr +

∑r
i=1 αix

r−i. Then

NK
F (a) = (−1)[K:F ]α[K:F ]/r

r TrKF (a) = −
[K : F ]α1

r

Furthermore, if K/F is separable and σ1, . . . , σn : L ↪→ F are the distinct F -embeddings of
K in F then

NK
F (a) =

n∏
i=1

σi(a) TrKF (a) =
n∑
i=1

σi(a)

and if K/F is not separable then TrKF (a) = 0. Finally, NK
F is a multiplicative homomorphism

and TrKF an additive homomorphism.

Let’s go over another basic property of these operations.

Proposition 8.9.3 (Transitivity). Let K/L/F be a tower of finite field extensions. Then

NK
F = NL

F ◦NK
L TrKF = TrLF ◦TrKL

Proof. This follows by noting that every F -embedding of K is an extension of a unique
F -embedding of L.

The trace function also has a strong connection to dual spaces.
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Theorem 8.9.4. Let K/F be a finite separable field extension. Then the map f : (x, y) 7→
TrKF (xy) is bilinear, and the map x 7→ f(x, ·) is an isomorphism between K and its dual space
over F .

Proof. That f is bilinear follows immediately from the linearity of TrKF . For the second part,

it’s clear that g : x 7→ f(x, ·) is an F -homomorphism from K to
←−
K . Suppose g(x) = 0. Then

for if x ̸= 0, we’d conclude that TrKF (xx
−1) = 0. Since TrKF (1) = [K : F ] ̸= 0, x = 0. Thus, g

is injective. Since dimF (K) <∞, this is sufficient for surjectivity.

Corollary 8.9.4.1. Let K/F be a finite separable field extension, and x1, . . . , xn a basis for
K over F . Then there exists another basis y1, . . . , yn of K over F such that TrKF (xiyj) = δij.

Proof. Since g is an isomorphism, there exists a basis of K over F dual to g(x1), . . . , g(xn).
This is the desired basis.

Theorem 8.9.5. Let K/F be a finite separable field extension. Let a ∈ K be an element
such that F (a) = K, and let f = min(a, F ). Define

f(x)

(x− a)
= b0 + b1x+ · · ·+ bn−1x

n−1

where bi ∈ K. Then the dual basis of 1, a, . . . , an−1 for K over F is g(b0)
f ′(a)

, . . . , g(bn−1)
f ′(a)

, where g
is the function from Theorem 8.9.4.

Proof. Let a = a1, a2, . . . , an be the distinct roots of f . Then

n∑
i=1

f(x)

(x− ai)
ari

f ′(ai)
= xr

for any 0 ≤ r ≤ n− 1. Indeed, plugging in any aj to the left-hand side we get

n∑
i=1

f(aj)

(aj − ai)
ari

f ′(ai)

so the difference between the two sides is a polynomial of degree at most n−1 with a1, . . . , an
as roots, which implies that it must be zero.

We can extend TrKF linearly to a map K[x] → F [x] by having it act on each coefficient
separately. Using this new definition and the above equation, we’d get

TrKF

( n∑
i=1

f(x)

(x− ai)
ari

f ′(ai)

)
= nxr

Since K = F (a), any F -embedding of K into F is just a choice of which root of f to map a to.
Let σi : K ↪→ F be the embedding defined by σi(a) = ai, and in general write σi(aj) = aij,
where each aij is a root of f . By proposition 8.9.2, we know that

TrKF

( f(x)

(x− ai)
ari

f ′(ai)

)
=

n∑
j=1

σj

( f(x)

(x− ai)
ari

f ′(ai)

)
=

n∑
j=1

f(x)

(x− aij)
arij

f ′(aij)
=

n∑
j=1

f(x)

(x− aj)
arj

f ′(aj)
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which is completely independent of i. Thus, we get

TrKF

( f(x)

(x− a)
ar

f ′(a)

)
= xr

Or, expanding this out

TrKF

( n−1∑
i=0

ar

f ′(a)
bix

i
)
= xr

Comparing terms, we conclude that

TrKF

( bi
f ′(a)

ar
)
= δir

which is the desired result.

We’ll end off with a pair of related theorems, proved by Hilbert, which will be useful in the
next section.

Theorem 8.9.6 (Hilbert’s Theorem 90). Let K/F be a finite cyclic Galois field extension of
degree n with G = Gal(K/F ) = ⟨σ⟩. Pick any a ∈ K. Then NK

F (a) = 1 if and only if there
exists some non-zero b ∈ K such that a = b

σ(b)
.

Proof. Suppose that NK
F (a) = 1. Clearly, a ̸= 0. By lemma 8.8.1, we know

IdK +aσ + aσ(a)σ2 + · · ·+ aσ(a)σ2(a) · · ·σn−2(a)σn−1 ̸= 0

Thus, there exists some b ∈ K such that(
IdK +aσ + aσ(a)σ2 + · · ·+ aσ(a)σ2(a) · · · σn−2(a)σn−1

)
(b) = c ̸= 0

Then

aσ(c) = aσ
((

IdK +aσ + aσ(a)σ2 + · · ·+ aσ(a)σ2(a) · · · σn−2(a)σn−1
)
(b)

)
= a

(
σ + σ(a)σ2 + σ(a)σ2(a)σ3 + · · ·+ σ(a)σ2(a)σ3(a) · · ·σn−1(a)σn

)
(b)

=
(
aσ + aσ(a)σ2 + aσ(a)σ2(a)σ3 + · · ·+ aNK

F (a) IdK

)
(b) = c

Thus, a = c
σ(c)

as desired. Now, suppose that a = b
σ(b)

for some b ̸= 0. Then since NK
F (σ(b)) =

NK
F (b), we get NK

F (a) = 1.

There’s another form of this which sometimes gets brought up.

Theorem 8.9.7 (Hilbert’s Theorem 90 Additive). Let K/F be a finite cyclic Galois field
extension of degree n with G = Gal(K/F ) = ⟨σ⟩. Pick any a ∈ K. Then TrKF (a) = 0 if and
only if there exists some non-zero b ∈ K such that a = b− σ(b).
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Proof. Suppose that TrKF (a) = 0, and set b ∈ K such that TrKF (b) = 15. Let

c = aσ(b) + (a+ σ(a))σ2(b) + · · ·+ (a+ σ(a) + · · ·+ σn−2(a))σn−1(b)

Then

a+ σ(c) = a+ σ(a)σ2(b) + (σ(a) + σ2(a))σ3(b) + · · ·+ (σ(a) + · · ·+ σn−1(a))σn(b)

= aσ(b) + (a+ σ(a))σ2(b) + · · ·+ (a+ σ(a) + · · ·+ σn−2(a))σn−1(b)

− a(σ(b) + σ2(b) + · · ·+ σn−1(b)) + (σ(a) + · · ·+ σn−1(a))b+ a

= c− a(TrKF (b)− b) + (TrKF (a)− a)b+ a = c− a(1− b)− ab+ a = c

so a = c − σ(c). If there exists some b ∈ K such that a = b − σ(b), then the result follows
from TrKF (σ(b)) = TrKF (b).

8.10 Cyclotomic and Cyclic Extensions

This section is based off a similar one in [Lan05], along with lectures by Dr. Sujatha Ram-
dorai. In it, we study the seemingly simple equation xn − 1.

Definition 8.10.1. Let F be a field. An nth root of unity over F is a solution to the
polynomial xn − 1 in F .

Note. 1 is always an nth root of unity.

Sometimes, 1 is our only nth root of unity.

Proposition 8.10.2. Let char(F ) = p ̸= 0, and suppose that n = pk for some k ≥ 0. Then
the only nth root of unity is 1.

Proof. In F [x], xp
k − 1 = (x− 1)p

k
.

Theorem 8.10.3. Suppose char(F ) = 0 or GCD(char(F ), n) = 1. Then xn − 1 is separable
and the nth roots of unity over F form a cyclic multiplicative group.

Proof. The separability follows from (xn−1)′ = nxn−1 ̸= 0, since p ∤ n or char(F ) = 0. Thus,
xn − 1 has n distinct roots, call them 1, α1, . . . , αn−1. These form a multiplicative group, as
any finite multiplicative subgroup of a field is cyclic.

We denote this group of nth roots of unity by µn, and call a generator of µn a primitive nth
root of unity. By convention, we’ll use the symbol ζn to denote a primitive nth root of unity.

Proposition 8.10.4. Let n,m be coprime. Then µnm ∼= µn × µm.

Proof. This follows from the observations µn ∩ µm = {1} and |µnµm| = mn.

We now take a quick detour to talk about some basic rings.

5Such an element must exist by corollary 8.9.4.1
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Definition 8.10.5. The Euler totient function φ : N→ N is given by

φ(n) = {m ∈ N | m ≤ n,GCD(n,m) = 1}

Proposition 8.10.6. Let n ∈ Z. Then (Z/nZ)× is a multiplicative group of order φ(n).

Proof. First, note that a ∈ (Z/nZ)∗ if and only if it is coprime to n. Furthermore, if a is
coprime to n, then there exist b, c ∈ Z such that ab + nc = 1, so ab ≡ 1 mod n. Without
loss of generality, we may assume that 0 < b < n. But this also implies that b is coprime to
n.

Theorem 8.10.7. Suppose ζn is a primitive nth root of unity over F , where char(F ) ∤ n.
Then there exists an embedding Gal(F (ζn)/F ) ↪→ (Z/nZ)×. In particular, F (ζn)/F is Abelian
and Galois.

Proof. This follows by noting that every σ ∈ Gal(F (ζn)/F ) acts by σ(ζn) = ζkn for some k, ζkn
must be primitive for this to be an automorphism, and ζkn is primitive only if GCD(k, n) =
1.

Corollary 8.10.7.1. [F (ζn) : F ] | φ(n).

In general, the above embedding is not an isomorphism. However, there is a rather important
case where it is.

Theorem 8.10.8. Let ζn be a primitive nth root of unity over Q. Then Gal(Q(ζn)/Q) ∼=
(Z/nZ)×.

Proof. It suffices to show that the embedding from the previous theorem is surjective. That
is, it suffices to show that for any number k less than and coprime to n, ζkn is a primitive nth
root of unity. In particular, we only need to demonstrate the truth of this for prime k. To
that end, let f = min(ζn,Q), and let h ∈ Q[x] be the polynomial such that xn−1 = f(x)h(x).
h, f both have leading coefficients 1, and hence are primitive and in Z[x] by lemma 3.9.12
and Gauss’ lemma6. It will suffice to show that, for any prime p coprime to and less than
n, ζpn is a root of f . Suppose this were not the case. Then ζpn would be a root of h. Thus,
f(x) | h(xp), that is there exists some g ∈ Z[x] such that

h(xp) = f(x)g(x)

In mod-p arithmetic, this equality becomes

h(x)p ≡ f(x)g(x) mod p

In particular, f, h are not coprime when regarded as being in Z/pZ[x]. Since xn−1 = f(x)h(x)
still holds in Z/pZ[x], this would imply that xn − 1 is not separable in Z/pZ[x], which is
impossible.

6This is not as obvious as I’m making it seem, but proving it is a good review of these concepts. It helps
to look at Theorem 3.9.4.
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Corollary 8.10.8.1. Suppose n,m are coprime. Then Q(ζn) ∩Q(ζm) = Q.

Proof. Since n,m are coprime, ζnζm = ζnm. By Theorem 8.10.8, Gal(Q(ζmn)/Q) ∼= Z/(nm)Z
∼= Z/nZ × Z/mZ, where the last isomorphism comes from n,m being coprime. The result
then follows from the fixed fields of Z/nZ and Z/mZ being precisely Q(ζn) and Q(ζm), along
with proposition 8.8.4.

Let’s look a bit more at factoring the equation xn− 1. We know that in an algebraic closure

xn − 1 =
∏

ζ∈F ,ζn=1

(x− ζ)

In particular, we can group these ζ by the smallest m for which ζm = 1. We define the
Φm(x), the mth Cyclotomic polynomial, to be the product of all the factors in xn − 1 where
m is the smallest number such that ζm = 1. It is immediate from this that

xn − 1 =
∏
d|n

Φd(x)

One may also note that the roots of ζd are precisely the primitive dth roots of unity over F .
We can rearrange the above equation as well, to get

Φn(x) =
xn − 1∏

d|n,d<nΦd(x)

This gives us a recursive formula for calculating Φn, as Φ1(x) = x−1 is known. In particular,
by Theorem 3.9.4, this formula implies that over Q, Φn ∈ Z[x] and is always monic. Since
there are precisely φ(n) primitive nth roots of unity over any field F , we conclude that
deg(Φn) = φ(n) and by Theorem 8.10.8 that over Q

Φn(x) = min(ζn,Q)

This also provides a slick proof of the identity

n =
∑
d|n

φ(d)

There are many other neat identities involving these polynomials, the interested reader is
directed to section 6.3 of [Lan05].

Let’s use these concepts, along with our results on norm and trace, to talk about cyclic
extensions.

Theorem 8.10.9. Let F be a field, and n ∈ N. Suppose that char(F ) is zero or coprime to
n, and that there is a primitive nth root of unity in F . Then the following hold.

1. If K/F is a cyclic Galois extension of degree n, then there exists some a ∈ K, b ∈ F
such that K = F (a) and a is a root of xn − b.
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2. If xn− b ∈ F [x], and a is a root of xn− b, then F (a)/F is a Cyclic Galois extension of
degree d | n.

Proof. 1. Let Gal(K/F ) = ⟨σ⟩, and let ζn ∈ F be a primitive nth root of unity. By
corollary 8.9.2.1, NK

F (ζn) = ζnn = 1. Thus, by Theorem 8.9.6, there exists some non-
zero a ∈ K such that ζn = a

σ(a)
. This implies an = σ(an), and hence that an is fixed

by ⟨σ⟩, meaning an = b ∈ F . xn − b therefore has distinct roots a, ζna, ζ
2
na, . . . , ζ

n−1
n a,

making it separable and making F (a) the splitting field of xn − b. Thus, K/F (a)/F is
a tower of Galois extensions. But clearly |Gal(F (a)/F )| = n, as any choice of ζkna for
a gives an automorphism of F (a), and so [F (a) : F ] = n⇒ K = F (a).

2. Now, suppose that xn − b ∈ F [x], and a is a root of xn − b. Then there exists some
minimal d | n such that ad ∈ F . We simply apply the above observations to xd − ad to
get the second result, as ζ

n/d
n is a primitive dth root of unity in F .

Theorem 8.10.10 (Artin-Schreier). 1. Suppose K/F is a cyclic Galois extension of de-
gree p = char(F ). Then K = F (a), where a is a root of some xp − x− b ∈ F [x].

2. Suppose b ∈ F . Then xp − x − b either splits completely or is irreducible over F , and
its splitting field is a cyclic Galois extension of degree p if it is irreducible.

Proof. 1. Let Gal(K/F ) = ⟨σ⟩. Since TrKF (−1) = −p = 0, there exists some a ∈ K such
that −1 = a− σ(a). Thus, we get

σ(ap − a) = σ(a)p − σ(a) = (a− 1)p − (a− 1) = ap − a

so ap − a = b ∈ F , and a is a root of f(x) = xp − x− b ∈ F [x]. It suffices now to show
that f is irreducible over F . Note that σ(a) ̸= a⇒ a /∈ F , and a, a+1, . . . , a+p−1 are
all distinct roots of f in F [x]. F (a)/F is therefore a non-trivial cyclic Galois extension,
whose Galois group has an order dividing p. But Z/pZ is the only non-trivial cyclic
group of order dividing p, so F (a) = K.

2. Suppose b ∈ F\F p, and set f(x) = xp − x − b. Let a be a root of f . Then a, a +
1, . . . , a + p − 1 are the distinct roots of f , making f separable and F (a)/F Galois
(and F (a) the splitting field of f). It’s clear that if any root of f is in F , then all
roots of f are. Thus, We just need to show that f is irreducible otherwise. Indeed,
suppose f(x) = g1(x) · · · gn(x) is a decomposition of f into irreducible polynomials in
F [x]. Then since all the roots of f differ only by addition of constants in F , each gi
must be the same degree d. We conclude that dn = p ⇒ d = p or n = p. The second
of these cases is impossible, as we’ve assumed that some root of f is not in F , so d = p
and hence f is irreducible.

We end off my mentioning some interesting results whose proofs are beyond the scope of this
text, or in the case of the Inverse Galois Problem simply too much of a digression to be worth
pursuing.
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Theorem 8.10.11 (Kronecker-Weber). We call an extension of Q Cyclotomic if it can be
obtained by adjoining roots of unity to Q. With that definition, any Abelian extension of Q
is a sub-extension of a Cyclotomic extension of Q. [Gha99]

Conjecture 8.10.12 (Inverse Galois Problem). Every finite Abelian group occurs as the
Galois group of some Galois extension of Q. [Gha99]

8.11 Solvable and Radical Extensions

This section is based on a similar one from [Lan05]. We start with any finite field extension
K/F . Denote by Knorm the splitting field of the family of polynomials {min(a, F )}a∈K , this
is the smallest normal extension of F containing K, and is often called the normal closure
of K over F .

Definition 8.11.1. A finite field extension K/F is solvable if Gal(Knorm/F ) is solvable.

We can also define Ksep to be the composition of all separable sub-extensions of a finite field
extension K/F . By Theorem 8.5.5, K/Ksep is purely inseparable and Ksep/K is separable.
Thus, since purely inseparable extensions have trivial Galois groups (indeed, all the minimal
polynomials have a single root) Gal(K/F ) = Gal(Ksep/F ). Furthermore, (Ksep)

norm/F is
separable, as all the relevant minimal polynomials are separable. Thus, for the purposes of
the following theorem, we may assume that all our field extensions are separable, as taking
the separable subfield plays well with field composition and taking normal closures.

Theorem 8.11.2. The class of solvable field extensions is distinguished.

Proof. Let K/F be solvable, and F ⊂ L ⊂ K any subfield of K containing F . Then

Knorm/Lnorm/F is a tower of Galois field extensions, and hence Gal(Lnorm/F ) ∼= Gal(Knorm/F )
Gal(Knorm/Lnorm)

.

Since Gal(Knorm/F ) is solvable, it follows by lemma 2.9.5 that Gal(Knorm/Lnorm),Gal(Lnorm/F )
are solvable, and hence K/L,L/F are solvable. Now, suppose that L/F,K/L are solvable.
Then we again get that

Gal(Lnorm/F ) ∼=
Gal(Knorm/F )

Gal(Knorm/Lnorm)

making Gal(Knorm/F ) solvable by the same lemma, and hence K/F solvable.

Now, suppose that L/F is any algebraic extension, and K/F is solvable. It suffices to
show that LK/L is solvable. Indeed, (KL)norm/Lnorm is Galois by proposition 8.8.3, and
from this same proposition we get Gal((KL)norm/Lnorm) ∼= Gal(Knorm/(Knorm ∩ Lnorm)) ↪→
Gal(Knorm/F ), thus making Gal((KL)norm/Lnorm) and hence KL/L solvable.

In practice, we prefer to work with a seemingly simpler class of solvable extensions. Note at
this point we drop the assumption that K/F is separable.
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Definition 8.11.3. Let K/F be a finite extension, and p = char(F ). We call K/F solvable
by radicals if there exists a finite field extension L/F containingK and a tower decomposition
of this extension

F = E0 ⊂ E1 ⊂ · · · ⊂ Em = L

such that each Ei+1 is formed by adjoining to Ei one of

1. A root of unity.

2. A root of xn − a ∈ Ei[x], where GCD(n, p) = 1, or p = 0, or n = p.

3. A root of xp − x− a ∈ Ei[x], if p ̸= 0.

The trick is, this is actually an equivalent definition to our definition of solvability!

Theorem 8.11.4. Let K/F be a finite extension. Then K/F is solvable if and only if it is
solvable by radicals.

Proof. First, suppose that K/F is solvable, and set G = Gal(Knorm/F ). We start with
the case where K is separable over F . It is important to note that Knorm/F is finite, as
K is finitely generated over F and hence we need only consider finitely many polynomials
when constructing Knorm. Thus, by Theorem 2.9.6, we can find a cyclic composition series
G = G0 ⊃ G1 ⊃ · · · ⊃ Gm = {1} of G. Define Ei = (Knorm)Gi∩K. Then Enorm

i = (Knorm)Gi ,
and

Knorm = Enorm
m /Enorm

m−1 / · · · /Enorm
0 = F

is a tower of field extensions with cyclic Galois groups. Let n be the product of all primes
dividing |G| not equal to char(F ), and let ζn be a primitive nth root of unity over F . Then
the above composition series has Galois groups which contain those of the composition series

Knorm(ζn) = Enorm
m (ζn)/E

norm
m−1 (ζn)/ · · · /Enorm

0 (ζn) = F (ζn)

Since F (ζn)/F is certainly finite, separable, and solvable by radicals, we may reduce to the
case where Knorm/F is cyclic and F contains an nth root of unity ζn. Let H be a subgroup
of G such that |H| = p, and let E = (Knorm)H . Then Knorm/E is a cyclic Galois extension
of order p, and by Theorem 8.10.10 there exists some a ∈ Knorm with minimal polynomial
xp − x − b ∈ E[x] over F such that Knorm = E(a). Doing this repeatedly, we may assume
that p ∤ |G|, and hence n = |G|. Finally, in this case, we conclude by Theorem 8.10.9 that
there exists some a ∈ Knorm such that KGal = F (a) and a is a root of xn − b ∈ F [x]. This
completes the proof in the case K/F being separable.

IfK/F is not separable, we can construct a tower of extensionsKnorm/Knorm
sep /F . By corollary

2.9.14.1, Knorm
sep /F is solvable by radicals. Thus, we need only then show that Knorm/Knorm

sep

is solvable by radicals. To that end, pick any a ∈ Knorm. Since Knorm/Knorm
sep is purely

inseparable, there exists some b ∈ F such that a is a root of xp
k − b, where k ∈ N. Thus,

Knorm/Knorm
sep is solvable by radicals, as claimed.
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Now, suppose that K/F is solvable by radicals. Let L be the finite field extension of K such
that L/F has the desired tower decomposition

F = E0 ⊂ E1 ⊂ · · · ⊂ Em = L

Since K ⊂ L, Knorm ⊂ Lnorm. Thus, since subgroups of solvable groups are solvable, it
suffices to prove that Lnorm/F is solvable. Note that Lnorm/L is radical, as we are simply
adjoining the other roots of the equations used in the tower Em/Em−1 · · · /E1/E0. Hence,
we may assume that L = Lnorm. Let n be the product of all the primes dividing [L : F ]
except p = char(F ). Then F (ζn)/F is certainly a radical extension, and it’s pretty clear
that Ei+1(ζn)/Ei(ζn) is still a radical extension as well, and L ⊂ L(ζn), we may assume that
ζn ∈ F . Then by Theorem 8.10.9, Theorem 8.10.10, and purely inseparable extensions having
a trivial Galois group, each Gal(Ei+1/Ei) is cyclic, and in fact each Ei+1/Ei is normal. We
claim that this implies Gal(Ei/F )�Gal(Ei+1/F ), and

Gal(Ei+1/F )

Gal(Ei/F )
∼= Gal(Ei+1/Ei)

giving us the desired decomposition of Gal(L/F ) and making it solvable. Indeed, suppose
σ ∈ Gal(Ei+1/F ). σ is entirely defined by how it acts on the series of elements a1, . . . , ai+1

such that Ej(aj+1) = Ej+1. Since at each stage our extension is normal, all the other roots
of the minimal polynomial of aj are in Ej. Thus, σ(aj) ∈ Ej, and hence σ restricts to an
F -automorphism of Ej. This would, in turn, imply that any such σ can be decomposed
into an F -automorphism of Ei and an Ei automorphism of Ei+1, which gives the desired
result.

8.12 Solving Polynomials

This section is based on a multitude of different sources, the foundations of which are notes
by Dr. Sujatha Ramdorai and [Lan05].

We’ve spent all this time building up Galois extensions, solvable extensions, and the like.
Now, we can finally talk about how they can be used to solve for (or determine when you
could solve for) the roots of polynomials. Let’s start with a basic definition.

Definition 8.12.1. Let f ∈ F [x]. We call f solvable if its splitting field is a solvable
extension of F .

How does this relate to solving polynomials? Well, consider the quadratic equation

x =
−b±

√
b2 − 4ac

2a

which gives the roots of a quadratic polynomial over any field except extensions of F2. It is
immediate from this equation that every quadratic polynomial over F is solvable, as we just
need to adjoin a root of x2− (b2− 4ac) to get the splitting field. This is what we really mean
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by ”solving by radicals”, we can solve the polynomials using only the operations of division,
multiplication, addition, and taking roots7.

Let’s specialize to polynomials over Q in particular. For quadratic polynomials we may
assume, without loss of generality, that f(x) = x2 + bx+ c. Then our roots are given by

−b±
√
b2 − 4c

Furthermore, we can quickly see that the Galois group of the splitting field of f , which we
denote Gal(f), is S2 if b2 − 4ac /∈ Q2 and {1} otherwise. We wish to try and do this for
higher-degree polynomials. Again, we start by assuming our equation is of the form

f(x) = x3 + bx2 + cx+ d

Setting y = x+ b/3, we get

f(x) = y3 + py + q

where

p =
3c− b2

3
q =

2b3 − 9cb+ 27d

27

Thus, we can assume our polynomial is in the form (called a depressed cubic)

f(x) = x3 + px+ q

It turns out that we can get a cubic formula for this equation, which is

3

√
27q ±

√
(27q)2 + 4 · 27p3

2

minus some special cases which we won’t get into here (it is still always solvable though).
The derivation of this is long and messy, and of no interest to us. What is of interest is
attempting to generalize the discriminant to this new cubic case.

Definition 8.12.2. Let f ∈ F [x] be a polynomial with leading coefficient 1 and degree
n ≥ 2. We define the discriminant of the polynomial, denoted Disc(f), to be

Disc(f) = (−1)
n(n−1)

2

∏
i ̸=j

(αi − αj)

where αi ∈ F are the roots of f .

Note. Disc(f) is fixed by any permutation of the roots of f , and hence is in F .

7Of course, we’re also allowed roots of xp − x − a for p ̸= 0, but our focus in on Q, so we don’t care too
much about that
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Let’s see what happens, for example, when n = 2. In this case, our formula becomes

Disc(f) = (α1 − α2)
2 = 4(b2 − 4ac)

just a trivial perfect square factor away from our normal definition! For the cubic case, we
get

Disc(f) = (α1 − α2)
2(α1 − α3)

2(α2 − α3)
2

Set δ(f) =
√
Disc(f). Then for any σ ∈ Gal(f), σ(δ(f)) = ±δ(f). We can view Gal(f) as a

subset of S3, with σ being a permutation of the roots. In this view, σ(δ(f)) = sgn(f)δ(f).

Now, let’s step back a bit. It’s clear that f is irreducible over Q if and only if it has no roots
in Q. Assuming f is irreducible, let α ∈ Q be a root. Then [Q(α) : Q] = 3. If f splits
completely over Q(α), then Gal(f) = A3 (i.e. we can only do 3-cycle permutations of the
roots). Otherwise, |Gal(f)| = 6 = |S3|, so Gal(f) = S3.

Theorem 8.12.3. Suppose f is cubic and irreducible over Q. Then Gal(f) = A3 if Disc(f) ∈
Q2, and Gal(f) = S3 otherwise.

Proof. Suppose that Disc(f) ∈ Q2. Then δ ∈ Q, so every σ ∈ Gal(f) must fix δ. It follows
that Gal(f) contains only even permutation, and hence Gal(f) = A3. Otherwise, δ /∈ Q and
hence is not fixed by every σ ∈ Gal(f). In particular, this implies that an odd permuation
exists in Gal(f)⇒ Gal(f) ̸= A3, so Gal(f) = S3.

One can generally solve the quartic as well, but doing so is a hideous exercise. There is also
a generalization of the above theorem to the quartic case. I’ll state it here, but not prove it.

Theorem 8.12.4. Any monic quartic f ∈ Q[x] can be put in the form f(x) = x4+px2+qx+r.
Suppose this f is irreducible over Q. Define the resolvant cubic of f , g(z), to be g(z) =
z3 − pz2 − 4rz + 4pr − q2. Then Disc(f) = Disc(g), and

1. Gal(f) ∼= V4, the Klein 4-group, if and only if Disc(f) ∈ Q2 and g(z) splits over Q.

2. Gal(f) ∼= A4 if and only if Disc(f) ∈ Q2 and g(z) has no roots in Q.

3. Gal(f) ∼= S4 if and only if Disc(f) /∈ Q2 and g(z) has no roots in Q.

4. Gal(f) ∼= Z/4Z if and only if Disc(f) /∈ Q2 and g(z) has exactly one root r′ in Q, and
the polynomials x2 + r′, x2 + (r′ − p)x+ r both split over Q(

√
Disc(f)).

5. Gal(f) ∼= D4 if and only if Disc(f) /∈ Q2 and g(z) has exactly one root r′ in Q, and (4)
does not hold.

Note. The above theorems will hold for any separable irreducible polynomial over a field of
characteristic zero or a sufficiently high characteristic.

Of course, the theorems I’ve given above are rather useless to you if you can’t calculate the
discriminant, which as of now would require the roots anyway. The trick here is that there’s
another way to compute the discriminant without knowing the roots! In order to do this,
we’ll need to take a quick detour to talk about the resultant.
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Definition 8.12.5. Let f(x) =
∑n

i=0 aix
n−i, g(x) =

∑m
i=0 bix

m−i ∈ F [x], where a0, b0 ̸= 0
and n,m ≥ 1. We define the resultant of these polynomials R(f, g) to be the determinant of
the matrix 

a0 a1 · · · an
a0 · · · an−1 an

. . . . . . . . .

b0 b1 · · · bm
b0 · · · bm−1 bm

. . . . . . . . .


where blank spaces are zero, the first pattern continues for m rows, and the second for n
rows.

Note. The above equation is not supposed to imply that m = n.

The following remarkable result is true, but the proof is long enough that I will not cover it
here. The interested reader could find it in [Lan05], section 4.8.

Theorem 8.12.6. Suppose α1, . . . , αn are the roots of f and β1, . . . , βm those of g in F .
Then

R(f, g) = am0 b
n
0

n∏
i=1

m∏
j=1

(αi − βj)

A corollary of this is what allows us to calculate the discriminant using the resultant, and
hence knowing only the coefficients of the polynomial. Again, we state it without proof.

Corollary 8.12.6.1. Disc(f) = (−1)
n(n−1)

2 a0Res(f, f
′).

Let’s go back now to the connection between solvable extensions and finding the roots of
polynomials. Suppose there existed a general formula for finding the roots of a degree n
polynomial, which used only multiplicative, division, addition, and taking roots. Then each
degree n polynomial would necessarily be solvable by radicals, and hence solvable. That is,

Theorem 8.12.7. There exists a general formula for finding the roots of a degree n polyno-
mial in F [x] which uses only multiplicative, division, addition, and taking roots only if each
polynomial of degree at most n is solvable.

We can use this to show that there is no extension of the quadratic formula to the quintic
and beyond.

Lemma 8.12.8. Sn is not solvable for n ≥ 5.

Proof. Suppose H,N ⊂ Sn are two subgroups such that N � H, H contains every 3-cycle,
and H/N is Abelian. Pick any distinct i, j, k, r, s ∈ {1, . . . , n}. Set σ = (ijk), τ = (krs).
Then

στσ−1τ−1 = (ijk)(krs)(ikj)(ksr) = (irk)
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Since H/N is Abelian, [H,H] ⊂ N . Thus, by the arbitrary choice of i, r, k, every 3-cycle is
also in N . Now, suppose that Sn had an Abelian tower of subgroups

{1} = Gn �Gn−1 � · · ·�G0 = Sn

Then applying our above observation repeatedly, we’d conclude that every 3-cycle is in Gn,
which is impossible.

Lemma 8.12.9. If p is prime, then the only elements of order p in Sp are p-cycles.

Proof. This is a simple consequence of writing permutations as the product of disjoint cycles,
and noting that the order of an n-cycle is n.

Lemma 8.12.10. Sn is generated by (12), (23), . . . , (n− 1n).

Proof. By induction on n. The case n = 2 is obvious. Now, suppose it holds for Sn−1. We
first show that all transpositions are generated by (12), (23), . . . , (n − 1n). We can induc-
tively assume it holds for any transposition not involving n. Thus, we need only consider
transpositions of the form (an), where a ̸= n. If a = n − 1 then we’re done. Otherwise, we
know by the inductive hypothesis that (an− 1) is in our generated set, and

(n− 1n)(an− 1)(n− 1n) = (an)

as required.

Now, let σ ∈ Sn, and give it a disjoint cycle decomposition σ = c1 · · · cn. Without loss
of generality, only c1 contains n, and hence c2 · · · cn is in our generated subgroup by the
inductive hypothesis. Writing

c1 = (na1a2 · · · ar)

we get by the inductive hypothesis that (a1a2 · · · ar) is in our subgroup, along with all trans-
positions and hence

(a1a2 · · · ar)(arn) = c1

implies the desired result.

Lemma 8.12.11. Suppose p is prime. Then Sp can be generated by any p-cycle and trans-
position.

Proof. Without loss of generality, let σ = (123 · · · p) be the p-cycle and τ = (1n) our trans-
position, where n ̸= 1. By raising our σ to the right power and re-ordering, we can assume
that n = 2. We get

στσ−1 = (23)

and
σ(23)σ−1 = (34)

Continuing this process, we see that (nn+1) is in the generated subgroup for any 1 ≤ n < p.
The result then follows by the previous lemma.
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Lemma 8.12.12. Suppose f ∈ Q[x] is irreducible of prime degree p, and has exactly two
non-real roots. Then Gal(f) = Sp.

Proof. We know for certain that Gal(f) ⊂ Sp, and that p | |Gal(f)|. Thus, by Sylow’s
theorems, there exists a p-cycle (123 · · · p) ∈ Gal(f). The complex conjugate is in Gal(f),
and by assumption must be of order two and hence a transposition. The result then follows
by lemma 8.12.11.

Theorem 8.12.13. The general quintic equation is not solvable over Q.

Proof. The polynomial f(x) = x5 − 4x + 2 is irreducible over Q by the Eisenstein criteria,
and can be shown fairly easily to have three real roots.

Just as Galois would have wanted.

I end off this section by finally paying off a debt from back in the ring theory chapter.

Theorem 8.12.14 (Fundamental Theorem of Algebra). C is algebraically closed.

Proof. We know that C = R(i), where i is a root of x2 + 1. By direct computation, one
can show that every complex number has a square root, and hence that every degree two
polynomial in C[x] is reducible. We know that every finite extension of C is separable, and
hence any splitting field of a polynomial f ∈ C[x] is a Galois extension of C, and hence a
Galois extension of R. Call this splitting field Kf . Let G = Gal(Kf/R). Since we have
complex conjugation, we know that G has a Sylow-2 subgroup, call it H. KH

f must then
be an extension of R of odd degree, since it is Galois and Gal(KH

f /R) = Gal(Kf/R)/H.
By the primitive element theorem, there exists some a ∈ KH

f such that KH
f = R(a). Then

min(a,R) must be of odd degree, so since every polynomial in R[x] of odd degree has a real
root we conclude that a ∈ R and hence KH

f = R. But this in turn implies that H = G, and
hence that [Kf : R] is a power of two and therefore [Kf : C] is a power of two or equals one.
But in the former case since Gal(Kf/C) would have a subgroup of order a factor of two less
than Gal(Kf/C) by Sylow’s theorems, we’d get that C has a degree two extension, which is
impossible. Thus, [Kf : C] = 1⇒ Kf = C.

8.13 Transcendental Extensions*

This section is based on a similar one from [Lan05], along with chapter nine of [Mil22]. Earlier
in this chapter, we started focusing almost exclusively on algebraic field extensions. Here,
we study the exact opposite, which we call transcendental extensions.

Start with and field extension K/F . We can induce a partial order on algebraically indepen-
dent subsets of K, which we denote Σ, by inclusion. It is pretty clear that, by Zorn’s lemma,
Σ has a maximal element U ⊂ K. We call this U a transcendence basis of K.

Definition 8.13.1. Let K/F be a field extension and X ⊂ K a set. We say that y ∈ K is
algebraically dependent on X over F if there exists some p ∈ F [z1, . . . , zn+1] and x1, . . . , xn ∈
X such that p(x1, . . . , xn, zn+1) ̸= 0 but p(x1, . . . , xn, y) = 0. We say that a set Y is dependent
on X if every element of Y depends on X.
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Lemma 8.13.2. Suppose X = {x1, . . . , xm} be a subset of K over F . If y ∈ K is alge-
braically dependent on X over F but not {x1, . . . , xm−1}, then xm is algebraically dependent
on {x1, . . . , xm−1, y} over F .
Proof. Let p ∈ F [z1, . . . , zm+1] be the non-zero polynomial such that p(x1, . . . , xm, y) = 0
and p(x1, . . . , xm, z) ̸= 0 ∈ F [z]. We may write p in the form

p(z1, . . . , zm+1) =
n∑
i=0

gi(z1, . . . , zm−1, zm+1)z
n−i
m

where gi ∈ F [z1, . . . , zm]. Plugging in, we get

p(x1, . . . , xm, z) =
n∑
i=0

gi(x1, . . . , xm−1, z)x
n−i
m

Thus, some gi(x1, . . . , xm−1, z) ̸= 0. Since y is not algebraically dependent on X\{xm},
gi(x1, . . . , xm−1, y) ̸= 0. Thus, it follows that xm is algebraically dependent on {x1, . . . , xm−1, y}.

Lemma 8.13.3. Algebraic dependence of sets over F is transitive.

Proof. Suppose A,B,C ⊂ K, C depends on B and B depends on A. Then F (C)/F (B)/F (A)
is a tower of algebraic field extensions. Hence, F (C)/F (A) is algebraic. Pick any c ∈ C.
Then there exists a polynomial p ∈ F (A)[x] such that p ̸= 0 and p(c) = 0. Note that any
element of F (A) may be written as a ration of polynomials in F [A]. Multiplying through by
the denominators of each coefficient in p, we get the desired result.

Lemma 8.13.4. Suppose that A = {a1, . . . , am}, B = {b1, . . . , bn} are subsets of K such
that A is algebraically independent over F , but algebraically dependent on B over F . Then
m ≤ n.

Proof. Suppose m ≥ n. Re-order the elements of A,B so that the common elements are
the firsts k entries (potentially none). That is, we get B = {a1, . . . , ar, br+1, . . . , bn}. By
assumption, ar+1 is algebraically dependent on B, but not {a1, . . . , ar}. Thus, there ex-
ists some minimal r′ ≥ r + 1 such that ar+1 depends on {a1, . . . , ar, br+1, . . . , br′} but not
{a1, . . . , ar, br+1, . . . , br′−1}. By lemma 8.13.2, it follows that br′ is algebraically dependent
on B1 = B\{br′} ∪ {αr+1}, and hence all of B is algebraically dependent on B1. Thus, by
lemma 8.13.3, A is algebraically dependent on B1. Repeating this process, we eventually get
A = Bi, and hence n = m.

Theorem 8.13.5. Every transcendence basis of K/F has the same cardinality.

Proof. The case where K/F has a finite transcendence basis follows immediate by lemma
8.13.4. Now, suppose that K/F does not have a finite transcendence basis. Let X =
{xi}i∈I , Y = {yj}j∈J be a pair of transcendence bases of K, and assume without loss of
generality that |I| ≤ |J |. It suffices to prove that |J | ≤ |I|. For each j ∈ J , let Uj ⊂ I be
a finite subset of such that yj is algebraically dependent on X ′ = {xi}i∈Uj over F . Then Y
is algebraically dependent on X ′ over F , and K is algebraically dependent on Y over F , so
K is algebraically dependent on X ′ over F . Thus, by the maximality of X, X ′ = X, from
which the result follows.
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Note. If S is a transcendence basis of K over F then K is algebraic over F (S), and that any
algebraic subset of K is contained in a transcendence basis. These are simple consequences
of the definitions and Zorn’s lemma respectively.

Definition 8.13.6. The transcendence dimension of a field extension is the cardinality of
any transcendence basis.

The last thing we’ll cover here is the decomposition of any field extension into a transcendental
and algebraic extension. Of course, we need to explain what we mean by this first.

Definition 8.13.7. A field extension K/F is called purely transcendental if there exists a
transcendence basis S of K over F such that F (S) = K.

It’s pretty clear that the desired decomposition is to take a transcendence basis S of K/F ,
then decompose into the tower K/F (S)/F , which will be a purely transcendental followed by
an algebraic field extension. There’s one last thing I want to mention about transcendence
and algebraic elements before ending off.

Theorem 8.13.8. Let K/F be a field extension. The subset L of elements in K algebraic
over F is a field.

Proof. It’s clear that 1, 0 ∈ L. Now, suppose that a, b ∈ L. Then F (a + b), F (ab) ⊂ F (a, b)
are both finite and hence algebraic extensions, so a + b, ab ∈ F . Since −a, a−1 ∈ F (a), they
are in L, giving the desired result.

8.14 Infinite Galois Groups*

We end off by talking briefly about the Galois groups of non-finite field extensions, following
a similar section in [Lan05]. To do this, we’ll primarily need to build up some tools from
group theory.

Theorem 8.14.1. Let I be a partially ordered set, {Gi}i∈I a collection of groups, and for
each pair i ≤ j ∈ I take a homomorphism φij : Gi → Gj such that if i ≤ j ≤ k then
φik = φjk ◦ φij. This collection of groups and maps has a limit in the category Grp.

Proof. We define our limit in the following manner. Start with

G = {(gi)i∈I | gi ∈ Gi, i ≤ j ⇒ φij(gi) = gj}

We claim that this is a subgroup of
∏

i∈I Gi. Indeed, pick any (gi)i∈I , (hi)i∈I ∈ G. Then for
any i ≤ j we get

φij(gihi) = φij(gi)φij(hi) = gjhj

and
φij(g

−1
i ) = φij(gi)

−1 = g−1
j

as required. We can define homomorphisms pi : G → Gi by projection. We claim that G
along with {pi}i∈I is the desired limit. First suppose that g = (gi)i∈I ∈ G, and i ≤ j. Then

(φij ◦ pi)(g) = φij(gi) = gj = pj(g)

203



8.14. INFINITE GALOIS GROUPS* CHAPTER 8. FIELDS AND GALOIS THEORY

as required. Now, suppose that H is a group and {qi}i∈I a set of homomorphisms such that
the diagram

Gi Gj

H

G

φij

qi

pj

qj

pi

commutes for any i ≤ j. We need to find a (unique) homomorphism ψ : H → G such that

Gi Gj

H

G

φij

qi

pj

ψ

qj

pi

commutes as well. In particular, we just need to satisfy the condition pi ◦ ψ = qi for any
i ∈ I. For some h ∈ H, let (gi)i∈I = ψ(h). Then our condition implies that gi = qi(h). This
fully defines the homomorphism, as required.

In this case, we denote G by G = lim←−Gi. Now, let K/F be an infinite Galois extension.
Let {L}i∈I be the set of all finite sub-extensions which are Galois. Set G = Gal(K/F ), Hi =
Gal(K/Li), Gi = Gal(Li/F ). Then by proposition 8.7.6, we get a standard projection homo-
morphism pi : G → Gi given by the projection map G 7→ G/Hi

∼= Gi. We can also define a
partial order on the set {Gi}i∈I by inclusion, and hence define our φij : Gi → Gj to be the
inclusion maps. We can set these all up to be consistent, so we get a unique homomorphism
ψ : G→ lim←−Gi such that the following diagram commutes

Gi Gj

G

lim←−Gi

φij

pi

ψ

pj

where the unlabelled arrows are associated projection maps.

Theorem 8.14.2. ψ is an isomorphism, so G ∼= lim←−Gi.

Proof. First, suppose σ ∈ ker(ψ). Then pi(σ) = IdGi for every i ∈ I, and hence σ is fixed
on every finite Galois sub-extension of K. Since every element of K is in some such sub-
extension, it follows that σ = IdK and hence ψ is injective. Now, pick any g ∈ lim←−Gi. We
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will define σ : G → G in the following manner. First, note that by our prior construction,
g = (σi)i∈I , where each σi ∈ Gi and if i ≤ j then φij(σi) = σj. If a ∈ K, let Li, Lj be any
Galois field extensions containing a. Let Lk = LiLj, which by proposition 8.8.3 is Galois.
Then by commutativity of the diagram

φik(σi)(a) = σk(a) = φjk(σj)(a)

But of course each φ map is just the identity on its source, so σi(a) = σj(a). Thus, we can
define σ : K → K by σ(a) = σi(a). This restricts, by assumption, to an automorphism on
every finite Galois sub-extension of K, and hence is an automorphism on K. Since clearly
ψ(σ) = g, ψ is surjective.

Note. There’s a lot of questions of choice of maps here that I’m glossing over. [Lan05] deals
with them a bit more thoroughly, though perhaps at the expense of the idea of the theorem
being less clear.

The consequences of this are quite simple, namely that any infinite Galois extension is fully
characterized by its finite Galois sub-extensions. If you know some topology and are interested
in studying infinite Galois extensions further, it may be worth looking at chapter 7 of [Mil22].
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