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1 Basic Definitions

1.1 Fields and Vectors

We begin with some of the most basic definitions in linear algebra.

Definition 1.1. A field is a set F with elements 0, 1 ∈ F along with operations +, · : F×F → F (i.e.
operations taking two field elements and returning one) satisfying the following axioms ∀x, y, z ∈ F

1. x+ y = y + x (Commutativity) 2. (x+ y) + z = x+ (y + z) (Associativity)

3. x+ 0 = x (Additive Identity) 4. ∃(−x) ∈ F such that x+ (−x) = 0 (Additive Inverse)

5. x · y = y · x (Commutativity) 6. (x · y) · z = x · (y · z) (Associativity)
7. 1 · x = x (Multiplicative Identity) 8. ∃x−1 ∈ F such that x · x−1 = 1 (Multiplicative Inverse)

9. x · (y + z) = x · y + x · z (Distributivity)

Notation 1.2. By convention, the · is dropped for multiplication, so x · y is written xy.

Essentially, fields are a generalization of the properties that make rational numbers so nice to work
with, with the elements 0, 1 being generalizations of those same elements in Q.

Example 1.3. Q,R,C are all fields. Some more exotic fields include Fp, the finite field of integers
modulo p ∈ N, where p is prime.

With fields in hand, we can now define vectors (whose axioms borrow their names from those in
Definition 3.2).

Definition 1.4. A vector space V over a field F is a set with an element 0⃗ ∈ V and operations
+ : V × V → V and · : F × V → V satisfying the following axioms ∀u⃗, v⃗, w⃗ ∈ V, x, y ∈ F

1. u⃗+ v⃗ = v⃗ + u⃗ 2. (u⃗+ v⃗) + w⃗ = u⃗+ (v⃗ + w⃗) 3. u⃗+ 0⃗ = u⃗

4. ∃(−u⃗) ∈ F such that u⃗+ (−u⃗) = 0⃗ 5. (x · y) · u⃗ = x · (y · u⃗) 6. (x+ y) · u⃗ = x · u⃗+ y · u⃗
7. 1 · u⃗ = u⃗ 8. x · (u⃗+ v⃗) = x · u⃗+ x · v⃗

Notation 1.5. Note that we are essentially overloading the operations +, ·, with different definitions
for their actions on fields and vectors. The operations being used is generally clear from context,
and the same convention is used for both. We will use an overhead arrow to indicate vectors for
the rest of this document. Other common notations include v and v.

Example 1.6. Qn,Rn,Cn are all vector spaces, where n ∈ N. However, we could define these
vector spaces to be over the field Q,R or C. For example, we could regard Rn as a vector space over
Q, or as one over R.
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1.2 Subspaces and Coordinates 1 BASIC DEFINITIONS

The above example is not particularly interesting, but we can construct more exotic examples.

Example 1.7. The set of all functions from R→ R is a vector space over the field R. We define
addition by (f + g)(x) = f(x) + g(x) and scalar multiplication by (af)(x) = a(f(x)).

1.2 Subspaces and Coordinates

Definition 1.8. A set U ⊆ V is called a subspace of V if it is closed under addition and scalar
multiplication. That is, if u⃗, v⃗ ∈ U and x ∈ F , then u⃗+ v⃗ ∈ U and xu⃗ ∈ U .

Example 1.9. {(x, 0) | x ∈ R} is a subspace of R2, but is only a subspace of C2 is we take C2 to
be over the field Q or R.

The above example illustrates an important point: while we define vector spaces abstractly, they’re
essentially impossible to work with without a coordinate system. Thus, we will now build up the
necessary machinery to move into coordinate systems.

Definition 1.10. A set U = {u⃗1, u⃗2, . . . , u⃗n} ⊆ V is called linearly independent if
∑n

i=1 αiu⃗i = 0⃗
implies that αi = 0, where αi ∈ F . A set that is not linearly independent is called linearly dependent.

There is a way to extend the above definition, and the rest of this section, to infinite sets. If you’re
interested in that, see section 4.

Example 1.11. The set {(1, 0, 0), (0, 1, 0)} ∈ R3 is linearly independent.

Definition 1.12. The span of a set U ⊆ V is the set

SpanF (U) =
{ n∑
i=1

αiu⃗i | αi ∈ F
}

(1)

that is, any vector that can be constructed by a linear sum of vectors in U .

Example 1.13. SpanC({(1, 0)}) = {(x, 0) | x ∈ C}.

Notation 1.14. If X = SpanF (U), we say that U spans X.

Combining these two notions, we can finally define the basis of a vector space.

Definition 1.15. A set X ⊆ V is called a basis if it is linearly independent and SpanF (X) = V .

The most basic example of this would be the standard basis in Rn, and every vector space has
a basis1. However, a basis is useless for our notion of coordinates unless it results in unique
coordinates. We prove this now.

Theorem 1.16. Let X be a basis for V . Then for any v⃗ ∈ V there exist unique αi ∈ F such that
v⃗ =

∑n
i=1 αix⃗i, where x⃗i ∈ X.

Proof. Suppose αi, βi ∈ F exist such that v⃗ =
∑n

i=1 αix⃗i =
∑n

i=1 βix⃗i. Then
∑n

i=1(αi − βi)x⃗i = 0⃗.
Since X is a basis, it is linearly independent, and hence by Definition 1.10 we must have that
αi − βi = 0, so αi = βi.

It’s not essential that you understand any of the proofs in this document, the writer of this section
is just a bored math student and wanted to prove things.

1Assuming the Axiom of Choice, which physics does as far as I’m aware
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Notation 1.17. The unique αi for any given v⃗ ∈ V relative to a basis X are referred to as v⃗’s
coordinates in that basis. These coordinates are what allow us to consider many arbitrary vector
spaces as being essentially identical to Fn, in a sense that will be made precise in section 2.

A final useful concept is that of dimension. This requires the following theorem, which we will not
prove.

Theorem 1.18. Suppose that X,Y ⊆ V are bases of V . Then |X| = |Y |, that is both sets have the
same size.

Definition 1.19. The dimension of a vector space V is the size of its basis set.

Example 1.20. R3 has a standard basis of size 3, and so has dimension 3.

There are many other useful properties of linearly independent sets, we list some below.

Theorem 1.21. Let V be a vector space over a field F . Then the following all hold.

1. Any subset of a linearly independent set is linearly independent.

2. Any proper superset of a linearly dependent set is linearly dependent.

3. Any set with size larger than the basis of V is linearly dependent.

2 Linear Mappings

2.1 Basics of Mappings

To start this section, we cover some preliminaries of maps which may be unfamiliar to some. Note
that map is essentially just a fancy2 word for function.

Definition 2.1. Let X,Y be sets. A map f : X → Y is called injective if for all a, b ∈ X,
f(a) = f(b) if and only if a = b. The map is called surjective if for all y ∈ Y , there exists some
x ∈ X such that f(x) = y. A map that is injective and surjective is called bijective.

Are we done with notation? Of course not, mathematics just cannot resist more notation. We
denote by 1 the map which satisfies 1(x) = x for all x ∈ X, essentially the map that does nothing.
This is called the identity map.3 We say that a map is invertible if there exists another map
g : Y → X such that g ◦ f = f ◦ g = 1.4 We denote this inverse f−1 when it exists. With this, we
can finally get to the point.

Theorem 2.2. A function f : X → Y is invertible if and only if it is bijective.

Proof. First, suppose that f is invertible, with inverse f−1. If f(x) = f(y), where x, y ∈ X, then
this would imply that f−1(f(x)) = f−1(f(y)), so x = y. Hence f is injective. Pick any y ∈ Y .
Then f(f−1(y)) = y, so ∃x = f−1(y) ∈ X such that f(x) = y. Hence, f is surjective and therefore
bijective. Now, suppose that f is bijective. Pick any y ∈ Y . Then there exists a unique x ∈ X
such that f(x) = y. Hence, the map g : Y → X given by g(y) = x is well-defined. A quick check
shows that g is indeed the inverse of f .

2Mathematicians love to be fancy.
3In fact, the same identity as in Example 1.7
4We abuse notation here, the two compositions produce identity maps on X and Y respectively, so they’re

technically not equal
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Before we leave, we need one more piece of notation.

Definition 2.3. The image of a map f : X → Y is given by

Im(f) = {y ∈ Y | ∃x ∈ X, f(x) = y}

2.2 Linear Maps

We now come to the central concept of linear algebra.

Definition 2.4. A linear map is a map f : V →W between two vector spaces over a common field
F which satisfies, for all u⃗, v⃗ ∈ V, α ∈ F :

• Additivity: f(u⃗+ v⃗) = f(u⃗) + f(v⃗).

• Homogeneity: f(αv⃗) = αf(v⃗).

This can be simplified and written as one property f(αu⃗+ v⃗) = αf(u⃗) + f(v⃗).

We denote by L(V,W ) the set of all linear maps from V to W . Consider the following examples:

Example 2.5. The zero map (denoted by 0) takes any element of a vector space V to the additive
identity of another vector space W . Specifically, 0 ∈ L(V,W ) is defined by

0v⃗ = 0, for any v⃗ ∈ V.

similarly, we have

Example 2.6. The identity element (denoted by I) which maps any v⃗ ∈ V to itself. Specifically,
I ∈ L(V, V ) is defined as

Iv⃗ = v⃗.

If you wanted to define a linear map in general, you’d need to define its action on each vector in
the vector space. This of course is not feasible, making the following theorem immensely useful.

Theorem 2.7. Let X ⊆ V be a basis. Then any linear map f : V → W can be uniquely specified
by its action on X. Furthermore, any choice of image for the basis produces a valid linear map.

Proof. Pick any v⃗ ∈ V . Then ∃αi ∈ F such that v⃗ =
∑n

i=1 αix⃗i. Thus, we get that

f(v⃗) = f
( n∑
i=1

αix⃗i

)
=

n∑
i=1

αif(x⃗i)

Since each f(x⃗i) is uniquely defined, so is f(v⃗). The unique definition follows from noting that
since X is linearly independent, no vector in X can be constructed as a sum of the others, and thus
the choice of the other f(x⃗j) places no restriction on possible choices of f(x⃗i)

5.

We can also multiply two linear operators to get a composition of operations. Consider T ∈ L(U, V )
and S ∈ L(V,W ). We define ST ∈ L(U,W ) by

(ST )(v⃗) = S(T v⃗), for v⃗ ∈ U.

This is the same as the composition of two functions.

Whenever it makes sense6, the product of two linear map have the following properties:

5Yes, I hand waved.
6We need to verify that the product of two linear map is also a linear map.
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• Associativity: T1(T2T3) = (T1T2)T3.

• Identity: TI = T and IT = T whenever T ∈ L(V,W ).

• Distributive property: (S1 + S2)T = S1T + S2T and S(T1 + T2) = ST1 + ST2 whenever
T, T1, T2 ∈ L(U, V ) and S, S1, S2 ∈ L(V,W ).

2.3 Null Spaces

For a T ∈ L(V,W ) we define the null space/kernel (denoted ker(T )) as

ker(T ) = {v⃗ ∈ V | T v⃗ = 0⃗}.

Example 2.8. Let T ∈ L(V,W ) be the operation of differentiation. Then any element v⃗ ∈ ker(T )
satisfies T v⃗ = v⃗′. The only vectors that have a zero derivative are constant vectors, hence the null
space of T equals the set of constant vectors.

Now we start building up towards one of the most important theorems in this chapter: the Rank-
Nullity theorem.

Proposition 2.1. If T ∈ L(V,W ), then ker(T ) is a subspace of V .

Proof. Suppose T ∈ L(V,W ), then by additivity,

T (⃗0) = T (⃗0 + 0⃗) = T (⃗0) + T (⃗0) =⇒ T (⃗0) = 0⃗,

and thus 0⃗ ∈ ker(T ). For some u⃗, v⃗ ∈ ker(T ), we have

T (u⃗+ v⃗) = T u⃗+ T v⃗ = 0 =⇒ u⃗+ v⃗ ∈ ker(T ),

and thus ker(T ) is closed under addition. If v⃗ ∈ ker(T ) and a ∈ F , then

T (av⃗) = aT (v⃗) = a0⃗ = 0⃗ =⇒ av⃗ ∈ ker(T ),

and thus ker(T ) is closed under scalar multiplication. Since ker(T ) contains 0⃗ and is closed under
both addition and scalar multiplication, ker(T ) is a subspace of V .

Now we continue with the next proposition7.

Proposition 2.2. When T ∈ L(V,W ), T is injective if and only if ker(T ) = {⃗0}.

Proof. Suppose that T is injective. We want to show that ker(T ) = {⃗0}. Consider some v⃗ ∈ ker(T );
we have

T v⃗ = 0⃗ = T (⃗0)
T is injective−−−−−−−−→ v⃗ = 0⃗.

Thus, ker(T ) = {⃗0}. To prove the other direction of the implication, suppose that null ker(T ) = {⃗0}.

For some u⃗, v⃗ ∈ V , suppose that T u⃗ = T v⃗. Then,

0⃗ = T u⃗− T v⃗ = T (u⃗− v⃗) =⇒ u⃗− v⃗ ∈ ker(T ).

So we have u⃗− v⃗ = 0⃗ which gives us u⃗ = v⃗, proving that T is injective.

7Bear with me for a bit; I understand if these propositions seem a bit random, but we are building towards what
I believe are the most important results of this chapter.
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It is then easy to show that, similarly, for T ∈ L(V,W ), Im(T ) is a subspace of W 8.
Now, we finally start showing what we have been building up to this entire section:

Theorem 2.9. If V is finite dimensional and T ∈ L(V,W ), then Im(T ) is a finite-dimensional
subspace of W , and

dim(V ) = dim(ker(T )) + dim(Im(T )).

where dim denotes the dimension of a space.

Proof. Let V be a finite-dimensional vector space, and T ∈ L(V,W ). Let u⃗1, u⃗2, . . . , u⃗m be a basis
of ker(T ). We can extend this set of linearly independent vectors to a linearly independent set
u⃗1, u⃗2, . . . , u⃗m, w⃗1, w⃗2, . . . , w⃗n, which forms a basis for V . So dim(V ) = m+ n, and the only thing
remaining to show is that Im(T ) is finite dimensional, and dim(Im(T )) = n. We can do this by show-
ing that (Tw⃗1, T w⃗2, . . . , T w⃗n) is a basis for image T . Let v⃗ ∈ V . Since u⃗1, u⃗2, . . . , u⃗m, w⃗1, w⃗2, . . . , w⃗n

spans V , we can write

v⃗ = a1u⃗1 + a2u⃗2 + · · ·+ amu⃗m + b1w⃗1 + b2w⃗2 + · · ·+ bnw⃗n.

where ai, bi ∈ F . Applying T on both sides, we get

T v⃗ =T (a1u⃗1) + T (a2u⃗2) + · · ·+ T (amu⃗m) + T (b1w⃗1) + T (b2w⃗2) + · · ·+ T (bnw⃗n)

=T (b1w⃗1) + T (b2w⃗2) + · · ·+ T (bnw⃗n), (2)

where T (a1u⃗1) + T (a2u⃗2) + · · · + T (amu⃗m) = 0⃗ because u⃗i ∈ ker(T ). We also know from eq. (2)
that Tw⃗1, T w⃗2, . . . , T w⃗n span Im(T ), which implies that Im(T ) is finite-dimensional. To show that
these are also linearly independent consider that for ci ∈ F , we have that if

0⃗ =c1T (w⃗1) + c2T (w⃗)2 + · · ·+ cnT (w⃗n)

=T (c1w⃗1 + c2w⃗2 + · · ·+ cnw⃗n),

then c1w⃗1 + c2w⃗2 + · · ·+ cnw⃗n ∈ ker(T ). Thus, for di ∈ F we have

c1w⃗1 + c2w⃗2 + · · ·+ cnw⃗n = d1u⃗1 + d2u⃗2 + · · ·+ dmu⃗m.

Since u⃗1, u⃗2, . . . , u⃗m, w⃗1, w⃗2, . . . , w⃗n are linearly independent, we know that all ci = dj = 0, and so
we have shown that

dim(V ) = dim(ker(T )) + dim(Im(T )),

2.4 Matrices

When we think of linear algebra, we think of matrices. But what really even is a matrix?

Definition 2.10. For natural numbers m,n a matrix is defined as a rectangular array having m
rows and n columns which has the structure:a11 . . . a1n

...
. . .

...
am1 . . . amn

 ,

where the first index of the element denotes the row, and the second index denotes the column, e.g.,
a43 is the element of the fourth row and third column.

8It is also a good exercise in one of the more important skills when dealing with vector spaces: proving that
something is a subspace of given vector space.
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While this is a definition for a matrix, it only defines the structure of a matrix; it can seem quite
random and hard to reconcile with anything that we have done up till this point. We now work
towards improving our intuition on what a matrix is, and connecting it to linear maps.

Let T ∈ L(V,W ). Then, for every k = 1, 2, . . . , n, we can write T v⃗k as a unique linear combination
of the basis of W , i.e.,

T v⃗k = a1,kw⃗1 + a2,kw⃗2 + · · ·+ am,kw⃗m, where aj,k ∈ F.

Here we can clearly observe that the a’s determine the linear map T . The m,n matrix formed by
these a’s is called the matrix of T , and it is denoted by M(T, (v1, v2, . . . , vn), (w1, w2, . . . , wm)).
In cases where the bases are obvious, we just write M(T ). Thus, we can think of matrices as
representations of linear maps. However, this raises the question of whether they behave as linear
maps; how do they add? How do they multiply? These are questions we will answer now.

Definition 2.11. We define matrix addition asa11 . . . a1n
...

. . .
...

am1 . . . amn

+

 b11 . . . b1n
...

. . .
...

bm1 . . . bmn

 =

 a11 + b11 . . . a1n + b1n
...

. . .
...

am1 + bm1 . . . amn + bmn

 .

Only matrices that are of the same size can be added, i.e., an m × n matrix can only be added to
another m× n matrix. This can be represented in terms of linear maps as

M(T + S) =M(T ) +M(S),

for some T, S ∈ L(V,W ).

Definition 2.12. We define the multiplication of a scalar and a matrix as

c

a11 . . . a1n
...

. . .
...

am1 . . . amn

 =

 ca11 . . . ca1n
...

. . .
...

cam1 . . . camn

 .

In terms of linear maps, this is
M(cT ) = cM(T ),

for c ∈ F and T ∈ L(V,W ).

Now that we have defined both addition and scalar multiplication, we should be able to show that
there exists a vector space Mat(m,n, F ) of all m× n matrices with elements all from F 9.

All that is left now is to consider what our matrix would look like if we had a composition of two lin-
ear maps. Consider three vector spaces V ,W , and U having bases (v1, v2, . . . , vn), (w1, w2, . . . , wm),
and (u1, u2, . . . , up) respectively. Let S : U → V and T : V → W be linear maps; the composition
TS is a linear map from U →W . How can we findM(TS) fromM(T ) andM(S)? We know that
in the case of linear maps T ◦ S = TS, so the cleanest solution would beM(TS) =M(T )M(S),
however we have not yet defined matrix multiplication. Hence, we will define matrix multiplication
such that it forces the above equation to be true.

9A good starting point is the additive identity: the m× n matrix with all elements being 0.
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Definition 2.13. Let

M(T ) =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 andM(S) =

b11 . . . b1n
...

. . .
...

bn1 . . . bnp

 .

For k = {1, 2, . . . , p}, we have

TSu⃗k =T

(
n∑
r=1

br,kv⃗r

)

=
n∑
r=1

br,kT (v⃗r)

=
n∑
r=1

br,k

m∑
j=1

aj,rw⃗j

=
m∑
j=1

 n∑
r=1

aj,rbr,k︸ ︷︷ ︸
α

 w⃗j .

Thus, M(TS) is the m × p matrix whose entry in row j column k is given by α. This definition
of matrix multiplication only holds when the number of columns of the first matrix is equal to the
number of rows of the second matrix. Matrix multiplication is also clearly not commutative.

2.5 Invertibility

Here, we show some important results on inverting linear maps.

Proposition 2.3. If a linear map T : U → V is invertible, then its inverse is a linear map.

Proof. Pick any v⃗1, v⃗2 ∈ V and α ∈ F . Since T is invertible, there exist unique u⃗1, u⃗2 ∈ U such
that T u⃗1 = v⃗1, T u⃗2 = v⃗2. Thus, we get that

T−1(αv⃗1 + v⃗2) = T−1(αT (u⃗1) + T u⃗2) = T−1(T (αu⃗1 + u⃗2)) = αu⃗1 + u⃗2 = αT−1(v⃗1) + T−1(v⃗2)

as required.

Definition 2.14. Two vector spaces are called isomorphic if there exists an invertible linear map
from one vector space to the other.

The point of the above definition is that isomorphic vector spaces are essentially the same, just
presented in different forms. This is exemplified in the following theorem.

Theorem 2.15. Two finite-dimensional vector spaces are isomorphic if and only if they have the
same dimension.

Proof. To begin, consider V and W are finite-dimensional vector spaces that are isomorphic to one
another. Let there exist an invertible map T ∈ L(V,W ). Since T is invertible ker(T ) = {⃗0} and
Im(T ) = W . Thus, dim(ker(T )) = 0 and dim(Im(T )) = dim(W ). Then from the Rank-Nullity
theorem,

dim(V ) =dim(ker(T )) + dim(Im(T ))

=dim(W ).
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To prove the other direction of the implication, suppose that V andW are finite-dimensional vector
spaces having the same dimension. Let (v⃗1, v⃗2, . . . , v⃗n) be the basis of V and (w⃗1, w⃗2, . . . , w⃗n) be
the basis of W . For ai ∈ F let the linear map T ∈ L(V,W ) be defined as

T (a1v⃗1 + a2v⃗2 + · · ·+ anv⃗n) = a1w⃗1 + a2w⃗2 + · · ·+ anw⃗n.

T is clearly surjective since (w⃗1, w⃗2, . . . , w⃗n) spans W , and since (w⃗1, w⃗2, . . . , w⃗n) are linearly inde-
pendent, T is injective. As we have shown before, since T is bijective, it is invertible, and V and
W are isomorphic.

Corollary 2.15.1. Every n dimensional vector space is isomorphic to Fn.

Given a vector space V having basis (v1, v2, . . . , vn) and vector spaceW having basis (w1, w2, . . . , wm),
for each T ∈ L(V,W ) there exists a matrix M(T ) ∈ Mat(m,n, F ). This follows clearly from the
section on matrices, and we have also shown before that M(T ) is a linear map. Similar to T is
M(T ) also invertible when it is bijective?

Proposition 2.4. Suppose (v1, v2, . . . , vn) is a basis of V and (w1, w2, . . . , wm) is a basis of W ,
then there exists an invertible mapM between L(V,W ) and Mat(m,n, F ).

Proof. We require to show that M is bijective. To begin, let us prove injectivity. For some
T ∈ L(V,W ), ifM(T ) = 0, then Tvk = 0 for all k ∈ {1, 2, . . . , n}. Since (v1, v2, . . . , vn) is a basis of
V , implying T = 0. It follows clearly from proposition 2.2. thatM(T ) = 0. To prove surjectivity,

consider a matrix

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 ,

which lies in Mat(m,n, F ). Let T ∈ L(V,W ) such that

Tvk =

m∑
j=1

aj,kwj for k ∈ {1, 2, . . . , n}.

Clearly,M(T ) = A, and thus image ofM(T ) is Mat(m,n, F ), as required.

2.5.1 Operators

We start with a quick definition.

Definition 2.16. A linear map from a vector space onto itself is called an operator. The set of
all operators on a vector space is denoted by L(V, V ) = L(V ).

We have shown before that for a linear map between two vector spaces to be invertible, we require
it to be bijective. Is this the same for an operator? Perhaps, since the map is from a vector space
to itself, only injectivity or surjectivity might be enough since they could imply each other. This
is in fact true, and we shall prove this now.

Theorem 2.17. Suppose V is finite dimensional. If T ∈ L(V ), then the following are equivalent
statements:

(a) T is invertible.

9
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(b) T is injective.

(c) T is surjective.

Proof. Suppose T ∈ L(V ). We have shown before that (a) clearly implies (b). Suppose T is

injective, i.e., ker(T ) = {⃗0}. Thus, from Rank-Nullity theorem

dim(V ) =dim(ker(T )) + dim(Im(T ))

=dim(Im(T )),

which implies that Im(T ) = V , proving that T is surjective. Hence, (b) =⇒ (c).

Suppose T is surjective, i.e., Im(T ) = V . Once again, by Rank-Nullity theorem,

dim(ker(T )) =dim(V )− dim(Im(T ))

=0,

which implies that T is injective, and by extension, T is bijective. Thus, T is invertible, and
(c) =⇒ (a).

2.6 Norms and Traces

Before we finish this section, there are two more operations that we wish to talk about.

Definition 2.18. Let V be a vector space over C. A norm ∥·∥ : V → R+ is a function which
satisfies the following three properties

1. For all x⃗, y⃗ ∈ V , ∥x⃗+ y⃗∥ ≤ ∥x⃗∥+ ∥y⃗∥ (triangle inequality).

2. For all x⃗ ∈ V, α ∈ C, ∥αx⃗∥ = |α|∥x⃗∥.

3. ∥x⃗∥ = 0 if and only if x⃗ = 0⃗.

Example 2.19. The most common example of this is the euclidean norm on Rn, given by

∥x⃗∥ =

√√√√ n∑
j=1

x2j

Norms exist to give us a notion of size in a vector space. In fact, this notion of size can be extended
to L(V ) as well.

Definition 2.20. Let V be a vector space with a norm, and let T ∈ L(V ). Define the function
fT : V \{⃗0} → R+ by the following equation

fT (x⃗) =
∥T x⃗∥
∥x⃗∥

It turns out that exactly one of the following must be true.

1. There exists some smallest α ∈ R+ such that fT (x⃗) ≤ α always. In this case, we say that
∥T∥ = α.

2. fT is unbounded, in which case we say that ∥T∥ =∞.

10
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For our purposes we only really need this definition in section 4, but it’s interesting nonetheless and
does come up in more advanced quantum mechanics. Finally, we’ll bring up the following definition
which is much more important in quantum mechanics.

Definition 2.21. The trace of A ∈ Fn×n is defined by

Tr(A) =
n∑
i=1

Aii

that is the sum of the diagonal elements of A.

It turns out that this definition can be extended to any linear operator on a finite dimensional
vector space. In order to show this, we’ll need the following Lemmas, the first of which we’ll prove.

Lemma 2.22. For any A,B ∈ Fn×n, Tr(AB) = Tr(BA).

Proof.

Tr(AB) =
n∑
i=1

(AB)ii =
n∑
i=1

( n∑
j=1

AijBji

)
=

n∑
j=1

( n∑
i=1

BjiAij

)
=

n∑
j=1

(BA)jj = Tr(BA)

Lemma 2.23. Let V be an n-dimensional vector space and T ∈ L(V ). Let A,B ∈ Fn×n be the
matrix representations of T in two different bases. Then there exists a matrix Q ∈ Fn×n such
B = QAQ−1.

The matrix Q in the second lemma is called a change of basis matrix. Using these, we can make
our definition

Definition 2.24. Let V be an n-dimensional vector space and T ∈ L(V ). The trace of T is defined
by

Tr(T ) =
n∑
i=1

M(T )ii

that is the sum of the diagonal elements of the matrix representation of T .

Note that our above definition is well-defined since it doesn’t matter which basis we choose to take
a matrix representation in. Indeed, suppose that A,B are two different matrix representations of
T . Then by Lemma 2.23, there exists some matrix Q such that B = QAQ−1. By Lemma 2.22, we
have that Tr(B) = Tr

(
QAQ−1

)
= Tr

(
Q−1QA

)
= Tr(A), as required.

3 Dual Spaces and Diagonalization

3.1 Eigenvectors and Eigenvalues

Definition 3.1. Let A be a matrix. The vector v⃗ ̸= 0⃗ is an eigenvector of A iff there exists a
constant λ such that

Av⃗ = λv⃗

The constant λ is called an eigenvalue of A.

11
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Definition 3.2. The matrix A is diagonalizable iff there exists an invertible matrix M and a
diagonal matrix D such that

A =MDM−1

Note that diagonalizations are not unique.

Briefly, for an n-dimensional vector space, a matrix A is diagonalizable if it has a basis of eigenvec-
tors; that is, we can find n linearly independent eigenvectors. Then M is constructed by taking the
eigenvectors as columns and putting their corresponding eigenvalue in the nth column of D. As a
result, diagonalizing a diagonalizable matrix corresponds exactly to finding all of its eigenvectors
and eigenvalues, which also provide important information about how it behaves.

Practically, diagonalization also allows us to view the “spectrum” of the matrix, or how it changes
given inputs as a mapping. The action of a matrix A on an eigenvector v⃗ is just to scale it by λ,
and when we can construct a basis of eigenvectors of A, we can understand how every “component”
of an arbitrary vector u⃗ ∈ V changes under A by expanding it in this basis.

Definition 3.3. Let V be a vector space over C (or a subset of C) and let u⃗, v⃗ ∈ V , k ∈ C. An
inner product is a mapping

⟨u⃗, v⃗⟩ : V × V → C

with the following properties:

1. ⟨u⃗, u⃗⟩ ≥ 0 with equality only when u⃗ = 0

2. ⟨u⃗, v⃗⟩ = ⟨v⃗, u⃗⟩

3. k⟨u⃗, v⃗⟩+ ⟨u⃗, w⃗⟩ = ⟨u⃗, kv⃗ + w⃗⟩

Inner products generalize the idea of the dot product in Rn to more general vector spaces and
situations. They provide additional structure to a vector space that is often useful, so vector spaces
equipped with an inner product ⟨·, ·⟩ are separately called inner product spaces. This generalized
“inner product” also motivates the following generalization of orthogonality:

Definition 3.4. Let u⃗, v⃗ ∈ V be two vectors in an inner product space V . u⃗ and v⃗ are said to be
orthogonal if

⟨u⃗, v⃗⟩ = 0

Definition 3.5. Let V be an n-dimensional vector space. A basis {u⃗1, u⃗2 . . . u⃗n} is said to be
orthonormal if

⟨u⃗i, u⃗j⟩ = δij

where δij is the Kronecker delta function, which satisfies

δij =

{
1 if i = j

0 otherwise

Orthogonality is defined based on the inner product, which means that an inner product must be
specified when discussing it. In analogy to Rn, we also have the following result:

Lemma 3.6. Let V be an n-dimensional vector space with an orthonormal basis {u⃗1, u⃗2 . . . u⃗n}.
For every v⃗ ∈ V ,

v⃗ =

n∑
i=1

⟨u⃗i, v⃗⟩u⃗i

12
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As a result, performing calculations in an orthonormal basis is often more convenient, especially
when inner products are relevant. A natural question is whether every vector space has an or-
thonormal basis, and we can show that it does by constructing an orthogonal basis out of any
arbitrary basis. To show this, we first introduce the notation of projections:

Definition 3.7. Let u⃗, v⃗ ∈ V be two vectors in some vector space V . The projection of u⃗ onto v⃗ is
the vector

projv⃗(u⃗) =
⟨v⃗, u⃗⟩
⟨v⃗, v⃗⟩

v⃗

Lemma 3.8. Let V be a vector space with a basis {u⃗1, u⃗2 . . . u⃗n}. Then the basis

v⃗1 = u⃗1

v⃗2 = u⃗2 − projv⃗1(u⃗2)

v⃗3 = u⃗3 − projv⃗1(u⃗3)− projv⃗2(u⃗3)

...

v⃗n = u⃗n −
n−1∑
i=1

projv⃗i(u⃗n)

is orthogonal (and each vector can be normalized). The process of computing this orthonormal basis
is called the Gram-Schmidt process or Gram-Schmidt orthogonalization.

The most important result of this section is the spectral theorem for symmetric and Hermitian
matrices, which provides conditions for matrices being diagonalizable with an orthonormal basis
of eigenvectors, which allows us to work with orthonormal eigenvectors of an arbitrary Hermitian
operator. To do this, we introduce the following definitions:

Definition 3.9. The transpose of a matrix A is the matrix AT whose i, jth entry is aji. Informally,
this is A but with the rows and columns switched. A matrix A is called symmetric if AT = A.

Definition 3.10. A matrix H is said to be Hermitian if H† = H, where H† is the conjugate
transpose of H.

Definition 3.11. A matrix Q is called orthogonal if it satisfies QQT = QTQ = I. Equivalently, the
rows and columns of Q form orthonormal bases. Analogously, a matrix U is unitary if it satisfies
UU † = U †U = I.

A matrix being symmetric/Hermitian is a sufficient condition to have an orthonormal basis of
eigenvectors:

Theorem 3.12. Let S be a symmetric matrix. There exists an orthogonal matrix Q and a diagonal
matrix D such that

S = QDQ−1 = QDQT

Similarly, we have for Hermitian matrices that:

Theorem 3.13. If H is a Hermitian matrix, there exists a unitary matrix U and a diagonal matrix
D such that

H = UDU †

These theorems tell us that whenever we talk about Hermitian or symmetric matrices, we can
automatically assume that they are diagonalizable, and that we can construct an orthonormal
basis of eigenvectors. As a result, we can always choose an orthonormal basis (where inner products
simplify significantly).
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3.2 Dual Spaces

It turns out that one can see the inner product as an example of a more general phenomena : linear
functionals.

Definition 3.14. Let V be a vector space over a field F . A linear function f : V → F is called a
linear functional. The set V ∗ of all linear functionals on V is a vector space in itself, and referred
to as the dual space of V .

As an example, let’s look at how this connects to the inner product.

Example 3.15. Pick any vector v⃗ ∈ V . Then the function f(u⃗) = ⟨v⃗, u⃗⟩, where u⃗ ∈ V , is a linear
functional in V ∗.

It’s also worth considering how the basis of the dual space relates to the basis of a vector space.

Definition 3.16. Pick any vector v⃗ ∈ V . Let B ⊂ V be a basis of V such that v⃗ ∈ B. The dual of
v⃗ relative to this basis, denoted v⃗′ ∈ V ∗, is the unique linear functional defined by, for any u⃗ ∈ B

v⃗′(u⃗) =

{
1 v⃗ = u⃗

0 v⃗ ̸= u⃗
(3)

Note that the dual of a vector is inextricably tied to the basis we’ve chosen, choosing a different
basis with the same vector can lead to a different dual. For any given basis B, the set B∗ of the
dual of each element of B is called the dual basis of V .

Theorem 3.17. Let B be a basis for V . Then B∗ is a basis for V ∗.

Proof. First, we’ll show that it’s linearly independent. Let B = {⃗bi}ni=1. Suppose that
∑n

i=1 αib⃗
′
i =

0⃗′. Then for any b⃗j ,
(∑n

i=1 αib⃗
′
i

)
(⃗bj) = 0, so αj = 0. Thus, B∗ is linearly independent. Next, we

show that it’s spanning. Pick any f ∈ V ∗. Then it’s clear that f =
∑n

i=1 f (⃗bi)b⃗
′
i (since it’s fully

defined by its action on the basis), making B∗ spanning.

4 Additional Topics

4.1 Infinitesimal Rotations

Let’s start with an important generalization : you can take derivatives of functions between any
two normed vector spaces.

Definition 4.1. Let V,W be normed vector spaces and let f : V →W be a function. For any given
x⃗0 ∈ V , we say that f is differentiable at x⃗0 if there exists some linear operator Lx⃗0 : V →W such
that

lim
x⃗→x⃗0

∥f(x⃗)− f(x⃗0)− Lx⃗0(x⃗− x⃗0)∥
∥x⃗− x⃗0∥

= 0 (4)

If it exists, we call Lx⃗0 the differential of f at x⃗0. This is usually denoted dfx⃗0.

This is rather abstract, so let’s take a look at how it connects to our normal definition of the
derivative.
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Example 4.2. Let f : R→ R be a differentiable function on R. We note that R is a vector space
over R with norm ∥x∥ = |x|, and that linear operators take the form T (x) = ax for some a ∈ R.
Now, pick any x0 ∈ R. Then we need for

lim
x→x0

|f(x)− f(x0)− Lx0(x− x0)|
|x− x0|

= 0

We may write that Lx0(y) = ay for some a ∈ R, and hence get that

|f(x)− f(x0)− Lx0(x− x0)|
|x− x0|

=
∣∣∣f(x)− f(x0)

x− x0
− a(x− x0)

x− x0

∣∣∣ = ∣∣∣f(x)− f(x0)
x− x0

− a
∣∣∣

Since limx→x0
f(x)−f(x0)

x−x0 = f ′(x0), we can see that a = f ′(x0). So dfx0 = f ′(x0), that is the
differential is just evaluating the derivative!

Speaking of derivatives, we can generalize their definition too.

Definition 4.3. Let V,W be normed vector spaces and let f : V →W be a differentiable function.
Then the map Df which is defined by Df(x⃗) = dfx⃗ is the derivative of f .

Note : For those of you who have taken multivariable calculus, the above definitions are in fact
equivalent to the ones you would’ve seen in class.

Now that we’ve gone over of these preliminaries, let’s get to the point. Consider a rotation by θ in
R2. This can be represented by the linear operation

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
There’s something to note here : R can also be viewed as a function R : R→ R2×2. Both of these
are normed vector spaces, and hence we can find the differential of R. dR ∈ R2×2, so we can do
this component-by-component. Indeed, we can note that

lim
θ→θ0

∣∣∣cos θ − cos θ0 − a(θ − θ0)
θ − θ0

∣∣∣ = lim
θ→θ0

∣∣∣(1− θ2

2 + . . . )− (1− θ20
2 + . . . )− a(θ − θ0)

θ − θ0

∣∣∣
= lim

θ→θ0

∣∣∣(− θ2

2 + . . . )− (− θ20
2 + . . . )− a(θ − θ0)

θ − θ0

∣∣∣
But of course any terms of order two or higher in θ− θ0, and hence in θ or θ0, will go to zero faster

than θ − θ0, so this simplifies down to limθ→θ0

∣∣∣a(θ−θ0)θ−θ0

∣∣∣ = |a|. Thus, a = 0. Similarly, we can get

that

lim
θ→θ0

∣∣∣sin θ − sin θ0 − b(θ − θ0)
θ − θ0

∣∣∣ = lim
θ→θ0

∣∣∣(θ − θ3

3! + . . . )− (θ0 −
θ30
3! + . . . )− b(θ − θ0)

θ − θ0

∣∣∣
= lim

θ→θ0

∣∣∣(θ − θ0)− b(θ − θ0)
θ − θ0

∣∣∣ = |1− b|
so b = 1. Combining these results, we can get that for any θ0 ∈ R our differential is

dRθ0 =

(
0 −1
1 0

)
15
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which is independent of angle. From now on, we just call this dR.

Now, let’s take a step back here and notice something quite interesting. Pick any x⃗ ∈ R2, and let
δθ be a small rotation. We can note that

lim
δθ→0

∥R(δθ)−R(0)− dR(δθ)∥
∥δθ∥

= 0

so it follows that since R(0) = I

lim
δθ→0

∥(R(δθ)x⃗− x⃗− dR(δθ)x⃗∥
∥δθ∥

≤ lim
δθ→0

∥(R(δθ)−R(0)− dR(δθ)∥∥x⃗∥
∥δθ∥

= 0

That is for small angles, we get
R(δθ)x⃗ ≈ x⃗+ dR(δθ)x⃗

This is dR(δθ) is referred to as an infinitesimal rotation. It’s essentially a very good approximation
of the effects of a rotation on a vector for small angles.

Here’s the really interesting thing, we can go the other way. We can define our rotation operator
by saying that for small angles δθ

R(δθ)x⃗ ≈ x⃗+ dR(δθ)x⃗

Say we wanted to rotate through a large angle θ. We could divide this into N rotations by θ/N ,
computing each smaller rotation with our approximation. The approximation becomes exact as
N →∞, so

R(θ)x⃗ = lim
N→∞

(
I + dR(θ/N)

)N
x⃗

You may recognize this limit in the form limN→∞

(
1+θ/N

)N
= eθ. This suggests that our rotation

matrix should be R(θ) = edR(θ). So let’s answer one final question; is this the case, and if so what
does it even mean?

Let’s start with the question of what edR(θ) represents. One way of defining ex is via the following
formula

ex =

∞∑
n=0

xn

n!

So we’re going to try and extend this definition to linear operators. Say T : V → V is a linear
operator on a normed vector space. Then we define that

eT =

∞∑
n=0

Tn

n!

when this sum converges. Our notion of convergence here is the same used for sums of real numbers,
with the absolute value replaced with the operator norm. All of the properties of ex can be derived
from its series expansion, so it follows that these properties carry over to eT . dR(θ/N) is a linear
operator from R2 → R2, and we can get using the binomial expansion that(

I + dR(θ/N)
)N

=

N∑
n=0

(
N

n

)
dRn

( θ
N

)n
=

N∑
n=0

N !

n!(N − n)!
dRn

( θ
N

)n
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For any particular n, we get that

lim
N→∞

N !

n!(N − n)!Nn
= lim

N→∞

(N − 1) · · · (N − n+ 1)

n!Nn−1

=
1

n!
lim
N→∞

(N − 1) · · · (N − n+ 1)

Nn−1
=

1

n!

so

R(θ) =

∞∑
n=0

1

n!
dRn(θn) = edR(θ)

just like we were hoping! Finally, let’s compute what this matrix actually is. Through induction,
you can show that

dRn =



(
(−1)n/2

n! 0

0 (−1)n/2

n!

)
n even(

0 − (−1)(n−1)/2

n!
(−1)(n−1)/2

n! 0

)
n odd

the coefficients in the even case correspond to the power series for cosx, and the odd case those for
sinx, so it follows that

edR(θ) =

(
cos θ − sin θ
sin θ cos θ

)
meaning that we’ve recovered exactly what we started with!

4.2 Infinite Dimensional Vector Spaces

Let’s start by taking a closer look at example 1.7 and asking a simple question : what is the basis of
this vector space? It seems reasonable to say that no finite set of set of functions will do. And this
is not the only case of this phenomena, consider for example the vector space of finite sequences

V =
{
{qi} ∈ RN | finitely many qi are non-zero

}
(5)

This as well fails to have any finite basis. There are even physically relevant examples of this sort
of vector space. Those of you familiar with some quantum may be aware that the vector space
representing the state of a free particle also has no finite basis. Thus, any rigorous treatment of
vector spaces cannot limit itself to considering only finite bases.

Now in order to define infinite bases, we first need to decide what it means to sum up an infinite
number of basis vectors. Unfortunately, we lack any notion of distance or limits, so there is in fact
no consistent useful way to define an infinite sum. Luckily, we can sidestep the problem.

Definition 4.4. Let I be an indexing set, that is a set for which every element i ∈ I is associated
with exactly one vector u⃗i in the vector space V . Given any choice of αi ∈ F , the underlying
field, we say that

∑
i∈I αiu⃗i is well-defined only if at most a finite number of the αi are non-zero.

When the sum is well-defined, we set it equal to the finite sum including only terms with non-zero
coefficients.
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Note the important distinction here : our definition doesn’t actually tell us how to sum up an infi-
nite number of vectors, it just tells us how to write an arbitrary number of terms in our ostensibly
finite sum. However, it suffices for our purposes. We can use this definition to naturally extend
the definitions of span, linear independence, and basis to infinite sets, in each case only considering
finite sums of vectors picked from the infinite set.

This is still very abstract, so let’s go back to our example from Equation 5. We define {δij} as
the sequence which satisfies the following δij = 1 when i = j, and zero otherwise (essentially the
Kroekner delta function). Then the following set is in fact a basis for V

B = {{δij} | i ∈ N}

Since any element of V can have only finitely many non-zero elements in its sequence, we only ever
need to sum up finitely many elements of B, so this works with our new definition!

The next natural question would be which of our theorems from before carry over to infinite-
dimensional vector spaces. Theorem 1.16 carries over unchanged, and Theorem 1.18 carries over
replacing the size of the basis set with its cardinality. Points 1 and 2 of Theorem 1.21 also continue
to hold. For linear maps, we can still define them entirely by their action on the basis of a vector
space. However, our connection to Fn has effectively disappeared, and matrices/coordinates aren’t
nearly as useful.

Where things really get interesting is with dual spaces and eigenvectors/eigenvalues. Let’s get an
example to start with. Continuing with the vector space we’ve been using this entire time, we can
define the right shift operator R which acts in the following way

R(x1, x2, x3, . . . ) = (0, x1, x2, . . . )

Suppose we’re looking for an eigenvalue λ of R. Then we’d need for

(R− λ)(q1, q2, q3, . . . ) = (0, 0, 0, . . . )

(0, q1, q2, . . . )− (λq1, λq2, λq3, . . . ) = (0, 0, 0, . . . )

If λ ̸= 0, then q1 = 0, so q2 = 0, and so on. If λ = 0, we get the same result, so qi = 0. Thus, R
has no eigenvalues or eigenvectors. This is not an isolated incident : linear operators in infinite-
dimensional vector spaces are not guaranteed to have an eigenvalue or eigenvector. It follows that
diagonalization and the Gram-Schmidt method are not guaranteed to work either. Similarly, there
is no equivalent to the determinant or trace of an operator in infinite-dimensional vector spaces.
The operator norm is still perfectly well-defined without any changes though!

Let’s talk quickly about inner products as well. Inner-products are of course still perfectly well-
defined in infinite dimensional vector spaces, no changes needed. Our definition of a hermitian
operator is replaced with the more general self-adjoint operator.

Definition 4.5. The adjoint A† of a linear operator A : V → V is the unique operator V → V
such that for any vectors u⃗, v⃗ ∈ V , ⟨A†u⃗, v⃗⟩ = ⟨u⃗, Av⃗⟩

This turns out to be equivalent to the hermitian conjugate in finite-dimensional spaces. A self-
adjoint operator is simply an operator that is its own adjoint.

Definition 4.6. A unitary operator A : V → V is an operator such that AA† = A†A = I.
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Note that unlike the finite-dimensional case AA† = I or A†A = I on their own are not enough to
guarantee that an operator is unitary (this has to do with some cardinality nonsense).

Finally, we talk about dual spaces. The definition of dual spaces remains perfectly valid, but the
dual basis is no longer guaranteed to be a basis for the dual space (it is still called the dual basis
though, just to be extra confusing). There’s not much else to say, but I do want to go over one
final interesting example.

C∞
c (R) is the set of all functions which are infinitely differentiable (i.e. can be differentiated an

arbitrary number of times). In the dual space of this vector space lies the operator δ, which can be
defined by the following for any f(x) ∈ C∞

c (R)

δ(f) = f(0)

You may recognize this, it’s the Dirac delta function! There’s a lot of other interesting stuff we
can do with this definition, for example it allows us to extend the definition of a derivative to these
dual operators. In fact, we can find that

dδ

dx
(f) = − df

dx
(0)

5 Dirac Notation and QM

5.1 Introduction

Linear algebra lends itself to a plethora of applications in Physics, but one of the fields in Physics
that benefits most from a mathematically formal understanding is quantum mechanics. Indeed,
the formalism underlying quantum mechanics utilizes most if not all that has been covered in prior
sections, and much more.

Note: Before proceeding, we note that the complex conjugate of a ∈ C will be referred to via
a∗ instead of a henceforth.

5.2 Defining a Hilbert space

Before proceeding with introducing quantum mechanics formalism, it is essential to first define
a Hilbert Space, which the prior sections provide much of the machinery for. Some additional
concepts from mathematical analysis (definition 5.1 - definition 5.4) need to be introduced prior to
proceeding, which will briefly be summarized below.

Definition 5.1. A metric space is simply a set, X, equipped with a metric d : X × X → R+

satisfying the following properties, for any p, q, r ∈ X:

1. d(p, q) = 0 iff p = q

2. d(p, q) = d(q, p)

3. d(p, r) ≤ d(p, q) + d(q, r)

The metric space is referred to as (X, d), or in cases where the metric d may be inferred or is well
known, simply as X. Given X, it is easily possible to define a sequence that converges in X as
follows:
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Definition 5.2. A sequence {pn} of elements in a metric space X converges in X to a point p if
for all ϵ ∈ R+, there exists a positive integer N , such that for n ≥ N , d(pn, p) < ϵ.

In practice, the sequence {pn} is usually termed a convergent sequence (in X is omitted), and
sequences failing to satisfy this definition are referred to as divergent sequences. Convergent se-
quences can also be said to have a limit of p, i.e. that limn→∞ pn = p. Another useful definition is
that of a Cauchy sequence:

Definition 5.3. A sequence {pn} of elements in a metric space X is said to be Cauchy if for all
ϵ ∈ R+, there exists a positive integer N , such that for n,m ≥ N , d(pn, pm) < ϵ.

Cauchy sequences can be understood as formalizing the notion of elements in a sequence getting
closer together. Intuitively, it would be ideal if convergent sequences are Cauchy and vice versa,
but unfortunately the latter fails, that is, not all Cauchy sequences are convergent (in X). A key
example of this is sequences in Q with the absolute value metric, wherein it is possible to construct
sequences which converge to

√
2, but

√
2 is not itself in Q. As a result, it would be beneficial to

then classify spaces for which the notions of sequences being Cauchy and convergent are identical:

Definition 5.4. A metric space X is said to be complete if every Cauchy sequence converges in X

In general, working with complete metric spaces is rather nice, as the notion of elements getting
closer to one another is consistent entirely with the notion of convergence and limit of a sequence.
Through defining metric spaces and the notion of completeness, it is possible to define a Hilbert
space, as follows:

Definition 5.5. An inner product space, (V, ⟨·, ·⟩) is said to be a Hilbert space, if it is complete
with respect to the metric d obtained from the norm prescribed by its inner product.

To elaborate a bit more, all inner product spaces are normed spaces. To see this, one may easily
construct the following norm, with the aid of the inner product:

∥v⃗∥ =
√
⟨v⃗, v⃗⟩

It can easily be verified that this satisfies the properties of a norm. This prescribed norm also
induces a metric on the inner product space, V , via:

d(u⃗, v⃗) = ∥u⃗− v⃗∥

The notion of completeness in definition 5.5 refers to the completeness of the metric space (V, d).
In general, this notion of completeness for vector spaces only requires a norm, and not an inner
product. Normed vector spaces which are complete with respect to the metric obtained from the
norm are called Banach Spaces. Hilbert spaces are special Banach spaces, in which the space with
the natural norm prescribed by the inner product forms a Banach space - this provides them with
additional structure. 10

One may ask what the benefits of completeness are, apart from the fact that it aligns better
with intuition for sequences, and that is quite a good question to ask at this stage. In general, it
allows the avoiding of leaving the space in the limit, which the

√
2 example above demonstrates

can easily happen. In what ways this can happen in quantum mechanics will be further elaborated
on in the later sections, which, having defined a Hilbert space, can now be discussed.

10In finite dimensional vector spaces, all inner product spaces are also complete. This fails in infinite dimensional
spaces, wherein the distinction becomes important.
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5.3 Dirac (bra-ket) notation

To begin a discussion on quantum mechanics formalism, it is important to recognize that quantum
mechanics is itself axiomatic - there are certain postulates which must be accepted or agreed upon
to build a foundation. One such postulate is that the state of a system at a given instant is given
by a ket, |ψ⟩, in the space of states.

This, of course, may encourage a few questions - namely, what are kets, and the space of states?
The space of states is a Hilbert space, with field C, with its elements or vectors (notated v⃗ usually)
notated via kets |ψ⟩ instead. Since Hilbert spaces are vector spaces, a |ψ⟩ is also a state for a ∈ C.
Another postulate in quantum mechanics is that the state a |ψ⟩ represented by a multiple of another
state |ψ⟩ describes the same state - this is discussed in more detail past theorem 5.8. Then, any
linear combinations of two kets produces another ket in the Hilbert space, and such linear combi-
nations are understood to be a superposition of the states described by the two comprising kets.
In most introductory cases, the Hilbert space considered in quantum mechanics is the L2(R) space
with field C, which loosely can be understood as a vector space of all square integrable functions
on R.11

To proceed further, we consider along with a Hilbert space, H, its (continuous) dual space, H∗,
whose elements are referred to as co-vectors, forms/functionals on H, or bras, ⟨ϕ| (note that each
functional/bra is continuous, by assumption). As for why considering the (continuous) dual space
is natural, we want to be able to extract information from our states in a continuous way, which
usually corresponds to outputting some value (usually real). This notation of using bras and kets
is termed bra-ket notation, and its advantages will be seen throughout our upcoming discussion of
quantum mechanics formalism.

With H and H∗, the next motivation the reader may have is to enquire about the action of a
linear form/functional, ⟨ϕ|, on a vector |ψ⟩, compactly written as ⟨ϕ|ψ⟩ ∈ F = C. For some
intuition and concreteness, consider a finite n dimensional Hilbert space. Then a ket would be
represented by a n × 1 column vector, whereas a bra would then be represented by a 1 × n row
vector, so that the action of a bra on a ket, ⟨ϕ|ψ⟩ corresponds to matrix multiplication, producing
some c ∈ C. While this is a good picture to have in mind conceptually, for the sake of providing
some familiarity, it naturally breaks down for infinite dimensions and does not characterize the
result of the action, c, in any notable way. This clearly suggests that our notion of action needs to
be more general and informative.

Proceeding to generalize our notion of action of bras on kets requires better understanding the
structures of H and H∗. As already shown in theorem 3.17, given a basis B of a finite dimensional
vector space V , B∗ is a basis for V ∗. Hence V and V ∗ have the same dimension, and are isomorphic
(as Hilbert spaces are vector spaces, this is a more general result). Fortunately, this result holds for
Hilbert spaces in general, if the continuous dual space is considered12. While isomorphisms indicate
two objects are identical (bijective aspect of an isomorphism) wrt. the underlying structure im-
posed on them (with vector space structures, this corresponds to the linearity of the isomorphism),

11L2(X) space in actuality is a vector space of equivalence classes of square integrable functions on X, wherein
functions are equivalent iff they differ on sets with measure 0, but it can help to treat it as a space of functions for
now.

12The added structure of a Hilbert space H leads it to be isomorphic to its continuous dual space H∗ in finite or
infinite dimensions, via the Riesz representation theorem.
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the finite dimensional case already demonstrates that representing a vector wrt. a basis and hence
its dual functional wrt. the dual of said basis causes any isomorphism using the basis representation
to depend on the chosen basis, via definition 3.16.

To elaborate on the above and see why it may be problematic, one may choose to use the bases
B,B∗, while another may choose to use bases B1,B∗1, each of which produce different isomorphisms
φ,φ1 betweenH andH∗. With these isomorphisms, |ψ⟩ ∈ H would generally correspond to different
bras ⟨ϕ| , ⟨ϕ1| ∈ H∗, with the converse also holding true. Then, we remind the reader that a vector
in any vector space as an object exists entirely independent of bases. To see this more concretely,
v⃗ = (x, y) = (r, θ) is the same vector in R2, and each bases simply allows for different representations
of v⃗ that may be more convenient contextually. Similarly, |ψ⟩ ∈ H, and ⟨ϕ| ∈ H∗, as a state and
a functional are independent from any choice of bases, and it would be desirable to have a natural
correspondence, termed a canonical isomorphism, between a ket and bra, independent of this choice.

Indeed, the reader has already seen the machinery by which to construct this canonical isomor-
phism, in the example right below definition 3.14! Given |ψ⟩ ∈ H, we can define a linear functional
H∗ ∋ fψ : H → C, with fψ(|ϕ⟩) = ⟨|ψ⟩ , |ϕ⟩⟩, and consider the map g : H → H∗, with g(|ψ⟩) = fψ.
To see that g is an isomorphism, let fψ = 0H∗ . Then fψ(|ϕ⟩) = ⟨|ψ⟩ , |ϕ⟩⟩ = 0. Since |ϕ⟩ is arbitrary,
it follows that |ψ⟩ = 0H. Hence ker(g) = {0H}, and g is injective. Surjectivity follows since each
|ψ⟩ maps to a different functional fψ, along with H and H∗ being isomorphic. It can also be shown
that g is anti-linear 13 (please bear with the notation for now - it will be simplified significantly
soon):

g(a |ψ1⟩+ b |ψ2⟩)(|ϕ⟩) = faψ1+bψ2(|ϕ⟩)
= ⟨(a |ψ1⟩+ b |ψ2⟩), |ϕ⟩⟩
= ⟨|ϕ⟩ , (a |ψ1⟩+ b |ψ2⟩)⟩∗

= ⟨|ϕ⟩ , a |ψ1⟩⟩∗ + ⟨|ϕ⟩ , b |ψ2⟩⟩∗

= a∗⟨|ϕ⟩ , |ψ1⟩⟩∗ + b∗⟨|ϕ⟩ , |ψ2⟩⟩∗

= a∗⟨|ψ1⟩ , |ϕ⟩⟩+ b∗⟨|ψ2⟩ , |ϕ⟩⟩ = a∗g(|ψ1⟩)(|ϕ⟩) + b∗g(|ψ2⟩)(|ϕ⟩)

Though g is anti-linear, we define g to be the canonical isomorphism between H and H∗. One can
however use g to construct an isomorphism, by defining h : a |ϕ⟩ 7→ a∗ |ϕ⟩, with which g ◦h becomes
the desired isomorphism from H to H∗. As all h does is permute the kets in H, and g already
provides us with anti-linearity, this is one of the reasons g itself is considered the isomorphism, and
we now adopt the following notation, where |ϕ⟩ , |ψ⟩ ∈ H:

g(|ψ⟩) = fψ = ⟨ψ| ∈ H∗

⟨ψ|ϕ⟩ = fψ(|ϕ⟩) = ⟨|ψ⟩ , |ϕ⟩⟩

This syntactically justifies what initially seemed a rather strange choice of notation, and specifies
the action of a bra on a ket. The relation

⟨ψ| DC←→ |ψ⟩

given by g is termed the dual correspondence (DC) between bras and kets, with the bra ⟨ψ| being
the dual of |ψ⟩ and vice versa. Another consequence of the above provides the dual of a linear

13Note that while g is anti-linear, each bra it generates is a linear functional. Essentially, only the correspondence
between bras and kets is anti-linear, not the bras themselves.
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combination of kets:
|Φ⟩ = a |ϕ⟩+ b |ψ⟩ DC←→ a∗ ⟨ϕ|+ b∗ ⟨ψ| = ⟨Φ|

We can now discuss another reason for considering g to be the canonical isomorphism. It is clear
that, for a given single ket, the definition of the inner product yields:

⟨ψ|ψ⟩ = fψ(|ψ⟩) = ⟨|ψ⟩ , |ψ⟩⟩ = ∥|ψ⟩∥2

We hence need to verify that the above is consistent for linear combinations of kets as well. Taking
|Φ⟩ , |ψ⟩ , |ϕ⟩ as above, and using that each bra is a linear functional:

(a∗ ⟨ϕ|+ b∗ ⟨ψ|)(a |ϕ⟩+ b |ψ⟩) = a∗ ⟨ϕ| (a |ϕ⟩+ b |ψ⟩) + b∗ ⟨ψ| (a |ϕ⟩+ b |ψ⟩)
= a∗a ⟨ϕ|ϕ⟩+ a∗b ⟨ϕ|ψ⟩+ ab∗ ⟨ψ|ϕ⟩+ b∗b ⟨ψ|ψ⟩
= |a|2 ⟨ϕ|ϕ⟩+ |b|2 ⟨ψ|ψ⟩+ a∗b ⟨ϕ|ψ⟩+ ab∗ ⟨ϕ|ψ⟩∗

= |a|2 ⟨ϕ|ϕ⟩+ |b|2 ⟨ψ|ψ⟩+ 2Re{a∗b ⟨ϕ|ψ⟩}
= ⟨Φ|Φ⟩

Thus, defining g as the canonical isomorphism and using the dual correspondence obtained from g
lets the adopted notation provide a convenient representation of norms of kets in H:

⟨ψ|ψ⟩ = fψ(|ψ⟩) = ⟨|ψ⟩ , |ψ⟩⟩ = ∥|ψ⟩∥2, ∀ |ψ⟩ ∈ H

and we henceforth identify
√
⟨ψ|ψ⟩ with the norm of any |ψ⟩ ∈ H. Before proceeding further, we

note below some useful results to assist the reader:

Theorem 5.6. ⟨Φ| (a |ϕ⟩+ b |ψ⟩) = a ⟨Φ|ϕ⟩+ b ⟨Φ|ψ⟩

Proof. This follows from the linearity of ⟨Φ|.

Theorem 5.7. (a ⟨ϕ|+ b ⟨ψ|) |Φ⟩ = a ⟨ϕ|Φ⟩+ b ⟨ψ|Φ⟩

Proof. This follows from the definition of vector addition of bras in the dual space.

Theorem 5.8. ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩∗

Proof. Using the definition of the inner product: ⟨ϕ|ψ⟩ = ⟨|ϕ⟩ , |ψ⟩⟩ = ⟨|ψ⟩ , |ϕ⟩⟩∗ = ⟨ψ|ϕ⟩∗

To provide some concreteness, consider going back to the finite n dimensional case with the use of
bases. A ket |ψ⟩ would be represented as a column vector (v1, . . . , vn) wrt the standard bases in
Rn. Then, a bra ⟨ψ| would be represented as a row vector (v∗1, . . . , v

∗
n) in the standard dual basis,

so that the matrix product gives the inner product of |ψ⟩ with itself (also its square norm) - which
is not only consistent, but expands upon the picture we had initially!

To continue expanding our picture, we may now consider for each non-zero |ψ⟩ ∈ H, the correspond-
ing ket given by |Ψ⟩ = 1

∥|ψ⟩∥ |ψ⟩. This corresponds to the same state as |ψ⟩ by the second postulate

of quantum mechanics. In particular, as ∥|ψ⟩∥ ∈ R+, its dual is ⟨Ψ| =
(

1
∥|ψ⟩∥

)∗
⟨ψ| = 1

∥|ψ⟩∥ ⟨ψ|, and
via the theorems above, its norm is ⟨Ψ|Ψ⟩ = 1

∥|ψ⟩∥2 ⟨ψ|ψ⟩ = 1!

Thus, every non-zero ket in a Hilbert space has associated with it a normalized ket, and since
constant multiples of kets correspond to the same state, no generality is lost in considering any ket
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in H apart from the zero ket to be normalized. Thus, we may adjust our definition for a quantum
state to be a normalized ket |ψ⟩ ∈ H, and this will be assumed henceforth unless otherwise stated.

In summary, we represent states and (continuous) functionals on these states using bra-ket no-
tation, and we have been able to generalize and expand upon our intuition for vectors, their dual
functionals and the actions of dual functionals on a vector, in finite dimensional Hilbert spaces to
general ones through dual correspondence. We have also discussed the normalizability of non-zero
kets, and hence associated each state with a normalized ket henceforth. The exercises above have
already demonstrated some of the effectiveness of bra-ket notation: firstly that dual correspondence
is essentially incorporated within it, and secondly that it simultaneously provides rather clean no-
tation for norms of kets. The notation and formalism in introductory quantum mechanics usually
seems awkward, clunky, or strange to most experiencing it for the first time, but we hope that the
above provides some structure and motivation for bras, kets, and bra-ket notation as a whole.

5.4 Operators, Observables, and eigenstates

Before proceeding any further, one may ask why operators (definition 2.16) are essential in our
discussion of quantum mechanics formalism, and the answer to this lies in another postulate of
quantum mechanics: Every observable attribute of a physical system is described by linear operators
acting on kets describing the state of the system. As such, observables such as position, momentum,
energy and more, are all represented by operators acting on kets in state spaces. The proceeding
sections thus tackle (linear) operators and their role in quantum mechanics.

5.4.1 Operators with bra-ket notation

With the aid of bra-ket notation, we may denote the action of an operator, T , on a ket, |ψ⟩, as T |ψ⟩.
The action of an operator on a bra, ⟨ψ|T can be defined and understood to produce another bra in
the dual space, which can act on a ket via (⟨ψ|T ) |ϕ⟩ = ⟨ψ| (T |ϕ⟩). With this definition, there is no
ambiguity in the expression ⟨ψ|T |ϕ⟩, as either notion of action are from definition equivalent. Op-
erators can hence be thought of as acting from the right with bras, and acting from the left with kets.

Since T |ψ⟩ is also a ket, a natural question to ask is what the dual of this ket is. The reader
may be tempted to say that it is ⟨ψ|T , but this is unfortunately not generally true. We define the
dual of T |ψ⟩ as follows:

T |ψ⟩ DC←→ ⟨ψ|T †

where T † is defined to be the adjoint or Hermitian conjugate of the operator T , and is hence linear
by definition. We call operators for which T † = T Hermitian, which may sound familiar, as it is
the precise definition we gave for the conjugate transpose of T . Indeed, if H is a finite dimensional
Hilbert space, then T † is simply the conjugate transpose of T , as the below will demonstrate
formally:

Theorem 5.9. if H has dimension n, where n ∈ N, then T † as defined above is the conjugate
transpose of T

Proof. AsH is finite dimensional, |ψ⟩ =
∑n

i=1 aiei, where B = {ei} is a basis forH. Then B∗ = {e∗i }
is a dual basis for H∗, and ⟨ψ| =

∑n
i=1 a

∗
i e

∗
i . Let Tij denote the entry in the ith row and jth column
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of T (and similarly for T †). Then:

T |ψ⟩ =

T11 . . . T1n
...

. . .
...

Tn1 . . . Tnn


a1...
an

 =


∑n

i=1 aiT1i
...∑n

i=1 aiTni


and

⟨ψ|T † =
[
a∗1 . . . a∗n

]T
†
11 . . . T †

1n
...

. . .
...

T †
n1 . . . T †

nn

 =
[∑n

j=1 a
∗
jT

†
j1 . . .

∑n
j=1 a

∗
jT

†
jn

]
Then, it follows that, since ⟨ψ|T †(T |ψ⟩) = ⟨Tψ|Tψ⟩ by definition of T †:

[∑n
j=1 a

∗
jT

†
j1 . . .

∑n
j=1 a

∗
jT

†
jn

]
∑n

i=1 aiT1i
...∑n

i=1 aiTni

 =
n∑
k=1

(
n∑
i=1

aiTki

)∗( n∑
i=1

aiTki

)

Then via matrix multiplication, it follows that:

n∑
k=1

 n∑
j=1

a∗jT
†
jk

( n∑
i=1

aiTki

)
=

n∑
k=1

(
n∑
i=1

aiTki

)∗( n∑
i=1

aiTki

)

This implies that:  n∑
j=1

a∗jT
†
jk

 =

(
n∑
i=1

aiTki

)∗

Re-indexing j = i then k = j, and using linearity and distributivity over multiplication of complex
conjugation: (

n∑
i=1

a∗iT
†
ij

)
=

(
n∑
i=1

a∗iT
∗
ji

)

Therefore T †
ji = T ∗

ij , which implies that T † is the conjugate transpose of T as required.

Hence the newly suggested definition of an Hermitian operator agrees with the definition for finite
dimensional Hilbert spaces, and generalizes well to infinite dimensions. Hermitian operators sup-
port the intuition we may have had with regards to dual correspondence, as the dual of T |ψ⟩ is
⟨ψ|T † = ⟨ψ|T . The simplest examples of Hermitian operators are the zero operator and the identity
operator. In fact, the identity operator being Hermitian is equivalent to dual correspondence:

I |ψ⟩ = |ψ⟩ DC←→ ⟨ψ| = ⟨ψ| I

Motivated by this, we adopt the following notation for dual correspondence henceforth:

⟨ψ| = (|ψ⟩)†, |ψ⟩ = (⟨ψ|)†

As an example of the utility of this notation, we prove the following

Theorem 5.10. ⟨ϕ|T |ψ⟩ = ⟨ψ|T †|ϕ⟩∗
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Proof. ⟨ϕ|T |ψ⟩ = ⟨ϕ| (T |ψ⟩). Using theorem 5.8 and the notation introduced above, ⟨ϕ| (T |ψ⟩) =
((T |ψ⟩)†(⟨ϕ|)†)∗ = ((⟨ψ|T †) |ϕ⟩)∗ = ⟨ψ|T †|ϕ⟩∗

As seen in the proof, the notation introduced makes it rather simple to refer to duals of kets, and
of operators applied to kets (and the duals of their corresponding duals as well).

The reader may notice that the notion of an Hermitian operator is almost natural or intuitive,
in the sense that it agreed with the naive guess we had for duals. This is not without reason, as
will be explored in the next section.

5.4.2 Observables as Hermitian Operators:

Up until now, our entire discussion has mostly been centered around abstract mathematics. How-
ever, the goal of quantum mechanics, as well as most formalism in Physics, is to describe, model
and characterize physical phenomenon. As such, a natural next step in our adventure through
quantum mechanics formalism is to incorporate physical descriptions within our formalism, and to
simplify these as much as possible.

Before proceeding, we prompt the reader to consider the special expression ⟨ψ|T |ψ⟩ - this is de-
fined to be the expectation (or mean/average) value of the operator T in a given state |ψ⟩. For an
observable, T = O, we would like the expected or mean value in any quantum state to correspond
to a real number (imaginary positions, energies and momenta do not carry physical significance
after all). As a result, we would like the following equality, based on theorem 5.10, to hold:

c = ⟨ϕ|O|ϕ⟩ ∈ R ⇐⇒ ⟨ϕ|O†|ϕ⟩ = c∗ = c = ⟨ϕ|O|ϕ⟩ (6)

Then, consider the following:

Theorem 5.11. For A,B ∈ L(H), and a, b ∈ C, ⟨ψ|(aA+ bB)|ϕ⟩ = a ⟨ψ|A|ϕ⟩+ b ⟨ψ|B|ϕ⟩

Proof. Using the linearity of A, B and ⟨ψ|:

⟨ψ|(aA+ bB)|ϕ⟩ = ⟨ψ| ((aA+ bB)|ϕ⟩)
= ⟨ψ| (aA|ϕ⟩+ bB|ϕ⟩)
= a ⟨ψ|A|ϕ⟩+ b ⟨ψ|B|ϕ⟩

which completes the proof.

Using the above theorem with eq. (6), it follows that expectation values for O are real if and
only if 0 = ⟨ϕ|O|ϕ⟩ − ⟨ϕ|O†|ϕ⟩ = ⟨ϕ|O −O†|ϕ⟩. Since |ϕ⟩ is arbitrary, it follows that O − O† =
0 ⇐⇒ O = O† or in words, O is Hermitian. Essentially, for quantum mechanics to hold physical
significance, we require Observables to be represented by Hermitian operators.

5.4.3 Determinate States and Eigenkets as Base Kets:

Next in quantum mechanics, we are interested in determinate states of an Observable, that is, states
which are invariant under operation of an Observable. Since a |ψ⟩, a ∈ C represents the same state
as |ψ⟩, invariance up to multiplication by a constant is sufficient. Specifically, we are interested in:

O |ψ⟩ = o |ψ⟩ , o ∈ C
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If this looks familiar, it should!14 This is indeed precisely referring to the eigenvalues and eigen-
vectors (eigenkets in this case) of the Observable, O. Our Observables being Hermitian operators
leads to some nice properties, which we will state and provide brief proofs for below:

Theorem 5.12. The eigenvalues of an Observable are real.

Proof. To prove this, let |ψ⟩ be an eigenstate of an Observable, O, and let ⟨ψ|ψ⟩ = a ̸= 0. Then
the following holds:

⟨ψ|O|ψ⟩ = ⟨ψ| (o |ψ⟩) = o ⟨ψ|ψ⟩
Additionally, since ⟨ψ|O = (O |ψ⟩)† = (o |ψ⟩)† = o∗ ⟨ψ|, by the same reasoning:

⟨ψ|O|ψ⟩ = (⟨ψ|O) |ψ⟩) = o∗ ⟨ψ|ψ⟩

Hence, it must hold that:
o ⟨ψ|ψ⟩ = o∗ ⟨ψ|ψ⟩ ⇐⇒ o = o∗

which uses the fact that eigenkets are not the 0 ket, which completes the proof.

Theorem 5.13. Eigenkets corresponding to distinct eigenvalues are orthogonal.

Proof. Let o1, o2 be distinct eigenvalues of O, and |ψ1⟩ , |ψ2⟩ the corresponding eigenkets. Then it
follows that:

⟨ψ1|O|ψ2⟩ = o2 ⟨ψ1|ψ2⟩
Similarly, considering the action of O on ⟨ψ1|:

⟨ψ1|O|ψ2⟩ = o∗1 ⟨ψ1|ψ2⟩ = o1 ⟨ψ1|ψ2⟩

where in the last equality, theorem 5.12 is used. Subtracting the 2 equations from each other yields:

0 = (o2 − o1) ⟨ψ1|ψ2⟩ ⇐⇒ ⟨ψ1|ψ2⟩ = 0

via the distinctness of o1 and o2. Recalling ⟨ψ1|ψ2⟩ = ⟨|ψ1⟩ , |ψ2⟩⟩, this completes the proof.

Another reason why eigenkets are so important can be seen almost immediately from prior work
if we restrict to the finite dimensional case, by theorem 3.13. The entire Hilbert space H can be
spanned by an orthonormal set of eigenkets for an observable O. With this in hand, it becomes
possible to discuss the notion of measurement in quantum mechanics, and this is where the above
result will showcase its utility.

5.5 Measurements in quantum mechanics

Based on our prior work, let O be an observable, let |ψi⟩ be its eigenkets, and ai be the (real-value)
eigenvalues, with 1 ≤ i ≤ n, where n is the dimension of H. Then any state |ϕ⟩ may be expressed
via

∑n
i=1 ci |ψi⟩. Using the fact that |ϕ⟩ is normalized, we may establish an important relation the

coefficients ci must satisfy, as below:

1 = ⟨ϕ|ϕ⟩ =

 n∑
j=1

cj |ψj⟩

†
n∑
i=1

ci |ψi⟩ =
n∑
j=1

c∗j ⟨ψj |
n∑
i=1

ci |ψi⟩ =
∑
i,j

c∗jci ⟨ψj |ψi⟩

=
∑
i,j

c∗jciδij

=

n∑
i=1

|ci|2

14If not, don’t worry, this material is hard!
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In particular, this gives us that each |ci|2 ≤ 1, and that the sum of the modulus of the coefficients
must be 1. As for why this is important requires the introduction of another axiom of Quantum
Mechanics - the Born rule.

The first statement of the Born rule is that the outcome of measuring a system in a state |ϕ⟩
for a quantity corresponding to the observable O is one of the eigenvalues aj of O. In other words,
the possible measurements of the quantity represented by observable O are quantized. This initially
seems rather strange, but using the work above, we hope to make this somewhat more intuitive.
The idea encapsulated by the Born rule is that the act of measurement changes the state - in other
words, an observer interacting with the system causes the state of the system to change in the
following way:

|ϕ⟩ → |ψj⟩

Then, measuring the system for the quantity represented by the observable O would yield the ex-
pectation value ⟨ψj |O|ψj⟩ = ⟨ψj |aj |ψj⟩ = aj ⟨ψj |ψj⟩ = aj , which is the claim made by the Born
rule. There is some ambiguity here however, as the system initially is in a superposition of states
|ψi⟩. What is it that decides which eigenket the system changes into? This is where the coefficients
ci, and the second statement of Born’s rule come into play.

The second statement of Born’s rule in our context is that each |ci|2 is a probability amplitude -
that is, each |ci|2 describes the probability that the system changes from |ϕ⟩ to |ψi⟩. Given what
we previously derived, this is not far from reasonable, as each |ci|2 ≤ 1, and the sum over all
i equates exactly to 1. Rephrasing the above, |ci|2 gives the probability that an observer mea-
sures ai for the quantity represented by O in the state |ϕ⟩. To give an example, if the system is
in a state |ϕ⟩ = 1√

2
|ψ1⟩ + 1√

2
|ψ2⟩, then the observer is equally likely to measure a1 or a2 when

measuring the system for the quantity represented by O. However, if the system is in the state

|ϕ⟩ =
√
3
2 |ψ1⟩ + i

2 |ψ2⟩, then the probability of measuring a1 is
∣∣∣√3

2

∣∣∣2 = 3
4 , and the probability of

measuring a2 is
∣∣ i
2

∣∣2 = 1
4 , so an observer is more likely to measure a1 than a2 in this case.

The fact that quantum systems work in this way is rather bizarre, and many first seeing this
would have a hard time believing that some of the postulates above lead to a physically meaningful
theory. These postulates do, however, characterize quantum systems, and the next section provides
a good example of such a system.

5.6 Stern Gerlach Experiment

We close off by providing an example of a quantum system. It is perhaps best to look at a system
which inspired and led to the formulation of Quantum Mechanics itself - the Stern-Gerlach exper-
iment. This involved firing collimated heated silver atoms through an inhomogeneous magnetic
field, causing them to deflect, with the deflections recorded on a screen. This deflection would
correspond to the z-component of the magnetic moment of the 47th electron in the silver atom,
and thus the z component of its spin (intrinsic) angular momentum. Classically, one would expect
a spectrum on the screen, as angular momentum, and thus the magnetic moment of the electron
would range through a continuum of values. Instead, the output on the screen was focused on
only two points (fig. 1) in equal intensities. This led to the conclusion that electron spin angular
momentum was indeed quantized - a clear departure from classical phenomenon.
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Figure 1: A figure detailing the set up of the Stern Gerlach (Sz) apparatus. The sharpness of
the north pole creates an inhomogenous magnetic field, which exerts a torque on the silver atoms,
causing their deflection. Figure from Modern Quantum Mechanics: Third Edition by J.J. Sakurai
and Jim Napolitano.

While the experiment was originally done in the z (Sz apparatus) direction, there is nothing partic-
ularly special about this choice, and the results may be replicated even in the x (Sx apparatus) and
y (Sy apparatus) directions. Even more bizarre than the quantization result above, is the result of
sequential Stern-Gerlach experiments. When one puts a collimated beam through an Sz apparatus,
it filters into 2 parts, an Sz+ and Sz− beam. Passing the Sz+ beam through an Sx apparatus
then further splits the beam into Sx+ and Sx− beams. This suggests, at least intuitively, that
the Sz+ beam is comprised in 1:1 ratio of atoms with Sx+ and Sx− components in spin angular
momentum. In particular, selecting the Sx+ beam from above, we expect it to comprise of atoms
with Sx+ and Sz+ components. This immediately breaks down however, as putting this beam
through the Sz apparatus splits it again into Sz+ and Sz− beams in equal proportions. As for why
this happens, it turns out that measuring Sz and Sx simultaneously is not possible, meaning that
when the Sz+ beam was passed through the Sx apparatus, all information about the system was
lost. In the language of operators, this specifically means that the operators corresponding to Sx
and Sz do not commute.

5.7 Introducing the Commutator

Definition 5.14. Given 2 operators, A and B, we define the commutator:

[A,B] = AB −BA

For operators that do commute, the commutator returns the 0 or null operator. It is fairly clear
to see that any operator commutes with itself. For a more concrete example, consider the energy
and momentum of a free particle (no potential). If the particle has momentum p, then the particle

has energy (entirely kinetic) p2

2m , and the operators mimic this behavior. As a result, knowing the
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energy in fact provides you with the momentum of the particle, and vice versa. Therefore:

[p,Hf ] = 0

where Hf is the Hamiltonian, or energy operator of a free particle. As an example of operators
that do not commute, it is in fact a postulate that the position and momentum operators satisfy:

[x, p] = xp− px = iℏ

That is, the operators do not commute. In other words, it is not possible to know both the
position and momentum of a system precisely, which is in fact the famous Heisenberg uncertainty
relation. For another example that is not just a postulate, we may relate back to our Stern Gerlach
experiment discussion from before. What the sequential experiments show is in fact:

[Sz,Sx] ̸= 0

and this is precisely why information about the particle momenta is lost after the beam passes
through the Sx apparatus, much like with measuring position and momentum. The commutator
satisfies several properties, some of which have been stated and proven below:

Proposition 5.1. For operators A,B,C, the commutator satisfies the following properties:

• [A,B] + [B,A] = 0

• [A+B,C] = [A,C] + [B,C]

• [A,B + C] = [A,B] + [A,C]

• [A,BC] = [A,B]C +B[A,C]

• [AB,C] = [A,C]B +A[B,C]

Proof. The proof of each property is given in order below:

• [A,B] = AB −BA = −(−AB +BA) = −(BA−AB) = −[B,A]

• [A+B,C] = (A+B)C − C(A+B) = (AC − CA) + (BC − CB) = [A,C] + [B,C]

• Identical to the proof right above.

• [A,BC] = ABC −BCA = ABC −BAC +BAC −BCA = (AB −BA)C +B(AC − CA) =
[A,B]C +B[A,C]

• Identical to the proof right above.

While a lot more can be said about Quantum Mechanics, we have at the very least scratched the
surface of its underlying formalism, and we hope the reader found this to be a digestible and useful
introduction to Quantum Mechanics, along with enjoying the application of some of the Linear
Algebra learnt prior!
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6 Angular Momentum in QM

6.1 Spin Operators

For the entirety of this introduction we have been concerned with the mathematical foundations
necessary for a complete understanding of linear algebra and its formal applications with quantum
mechanics. Yet, as we have talked about these behaviors, we have not given a physical application
of the formalism that we have so carefully set up. As such, we shall use this final section to in-
troduce one of the most well-known and arguably most important application of linear algebra in
quantum mechanics.

Spin is an inherent property of particles as well as other objects that behave quantum mechanically,
such as atoms. Contrary to its naming convention, spin is not the indication that the particle itself
is rotating, but rather an independent physical property that has been experimentally verified via
the Stern-Gerlach experiment. This name “spin” instead comes from the fact that the property
itself behaves very similarly to the physical property of angular momentum.

As we have previously seen, an operator in quantum mechanics require us to define two pieces
of information, the Hilbert space of the operator and its commutation relations. Let us begin by
writing out the commutation relations. Before we jump into spin, however, let us start by looking
at the so called canonical commutation relation.

Definition 6.1. Let ri denote the position operator of the i-th direction and pj denote the momen-
tum operator of the j-th direction. The commutation relation between xi and pj is defined to be as
follows:

[ri, pj ] = iℏδij
where δij is the Kronecker delta. This is known as the canonical commutation relation.

The derivation of this commutation relation is often treated in graduate level quantum mechanics
courses and the implications of this commutation relation is often treated in any undergraduate
level quantum mechanics course. For now, we shall simple treat this relation as an axiom for the re-
mainder of the material. However, now that we have the commutation relation for the position and
momentum operators, we can derive the commutation relation of the angular momentum operators.

Recall from classical mechanics that angular momentum is defined as

L⃗ = r⃗ × p⃗

or rather
Li = εijkrjpk

where εijk is the Levi-Civita symbol. Since we have the canonical commutation relation, we can
then derive the commutation relations between the components of angular momentum. We can
perform this explicitly.

Example 6.2. Consider the angular momentum operator in the x-direction, Lx, and the angular
momentum operator in the y-direction, Ly. We can explicitly write the operators using the definition
of angular momentum from classical mechanics.

Lx = rypz − pyrz
Ly = rzpx − pzrx
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Thus, their commutation relation follows as

[Lx, Ly] = [rypz − pyrz, rzpx − pzrx]
= [rypz, rzpx]− [rypz, pzrx]− [pyrz, rzpx] + [pyrz, pzrx]

= ry[pz, rz]px + [ry, rz]pzpx + rzry[pz, px] + rz[ry, px]pz

− ry[pz, pz]rx − [ry, pz]pzrx − pzry[pz, rx]− pz[ry, rx]pz
− py[rz, rz]px − [py, rz]rzpx − rzpy[rz, px]− rz[py, px]rz
+ py[rz, pz]rx + [py, pz]rzrx + pzpy[rz, rx] + pz[py, rx]rz

= −iℏ (rypx − pyrx)
= iℏ (pyrx − rypx)

Now, recall that the angular momentum operator in the z-direction is given by

Lz = rxpy − pxry = pyrx − rypx

and thus, we arrive at
[Lx, Ly] = iℏLz

as the commutation relation.

The remaining commutation relations are left as an exercise although their construction is nearly
identical to the above. We find that

[Lx, Lz] = −iℏLy

[Ly, Lz] = iℏLx
which can all be summarised as

[Li, Lj ] = iℏεijkLk
In addition to the commutation relation between components of the angular momentum, we may
also find the commutation relation between any component of the angular momentum and the
square of the magnitude of the angular momentum. Recall that the square of the magnitude is
found to be

L2 = L2
x + L2

y + L2
z

It then follows that the commutation relation is derived as

[L2, Lz] = [L2
x + L2

y + L2
z, Lz]

= [L2
x, Lz] + [L2

y, Lz] + [L2
z, Lz]

= Lx[Lx, Lz] + [Lx, Lz]Lx + Ly[Ly, Lz] + [Ly, Lz]Ly + Lz[Lz, Lz] + [Lz, Lz]Lz

= −iℏLxLy − iℏLyLx + iℏLyLx + iℏLxLy
= 0

While this commutation relation is derived for L2 with Lz, we can easily see that the commutation
relation holds for Lx and Ly, the calculation of which is also left as an exercise.

As we stated previously, spin is an inherent property that is analogous to angular momentum.
Thus, we find that the commutation relations for the spin operators are identical to that of the
angular momentum operators. We are left with the following six key commutation relations

[Sx, Sy] = iℏSz, [Sy, Sz] = iℏSx, [Sz, Sx] = iℏSy
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[S2, Sx] = 0, [S2, Sy] = 0, [S2, Sz] = 0

which define the spin operators.

Note: We can also define the commutation relations with other operators, such as the position,
momentum, and angular momentum operators, but all these commutators are trivial.

Now that we have our commutation relations defined, we can continue to define the Hilbert space
of the spin operators. To do so, we have two things to do. First, we should pick good quantum
numbers. Recall that good quantum numbers correspond to operators that commute with each
other. Thus, we can choose our quantum numbers to correspond to S2 and any component of the
spin. The conventional choice is Sz. Secondly, we can again refer to angular momentum to give us
insight into how our spin Hilbert space should be defined.

Let us once again return to angular momentum then. It is too much for us to derive here, as doing
so requires knowledge in both multivariable calculus and, more importantly, partial differential
equations. Regardless, if one would try to solve the Schrödinger equation in spherical coordinates,
they would find that the eigenvalues of L2 and Lz are

L2 |ψ⟩ = ℏ2l(l + 1) |ψ⟩

Lz |ψ⟩ = ℏml |ψ⟩

where l is the azimuthal quantum number and ml is the magnetic quantum number or the angular
momentum projection. It is also found that l and ml are bounded such that l ∈ Z≥0, and ml ∈ Z
with −l ≤ ml ≤ l. This then allows us to write any angular state as a unique combination of l and
ml.

Note: There is a method to derive these operators without referencing techniques of partial dif-
ferential equations which will be revisited in the subsection 6.2 once we have an understanding of
ladder operators.

There is, however, one problem with bringing these quantum numbers into our spin as is. As we
have established, spin is an intrinsic property of a particle. Because of this, it would make sense
that all particles of a particular type has the same overall spin s, which is analogous to our az-
imuthal quantum number l. They may differ on their spin projection ms, which is analogous to
our magnetic quantum number ml. Thus, there are a total of 2s − 1 possible spin states for any
given particle of spin s.

The problem appears when we consider the Stern-Gerlach experiment. The experiment shows us
that particles passing through an external magnetic field will discretely split based on their spin
state. Furthermore, the experiment showed us that there were two spin states for the used particles.
Yet, if the quantum number s is bound to only integer values, then there will always be an odd
number of possible spin states. Therefore, the spin quantum number s must be a non-negative
half-integer value.

s ∈ 1

2
Z≥0

The spin projection quantum number is still restricted to −s ≤ ms ≤ s and increases/decreases in
integer values.
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To sum this up, we can write any spin state using two quantum numbers, denoted s and ms, such
that the eigenstates have the following eigenvalues.

S2 |s,ms⟩ = s(s+ 1)ℏ2 |s,ms⟩

Sz |s,ms⟩ = msℏ |s,ms⟩

Furthermore, our four operators follow the commutation relations shown below.

[Sx, Sy] = iℏSz, [Sy, Sz] = iℏSx, [Sz, Sx] = iℏSy

[S2, Sx] = 0, [S2, Sy] = 0, [S2, Sz] = 0

Note: For the following three final sections, we will be treating ℏ = 1 as writing the additional
terms is tedious. Furthermore, the notation is consider standard and should a reader need to recall
where the ℏ is located, they are recommended to look back at the previous sections.

6.2 Ladder Operators

While we have made some headway into understanding this intrinsic spin, there is still quite a bit
of ground that can be covered here. For example, while we have know how S2 and Sz operate on
our states, since they are eigenstates, we do not know how Sx and Sy operates on the same states.
Of course, one could move basis such that the quantum numbers used correspond to Sx and S2

instead of Sz and S2 but doing so is tedious, requires us to know how to move to said basis, and
results in the same issue with Sx now replaced for Sz. However, we can use what we have already
established to find how these other two operators operate in this basis. We first move directly into
this secret tool, known as a ladder operator.

Definition 6.3. Consider some operator N and its eigenstate |n⟩ with eigenvalue n. Suppose that
there is an operator X and constant c ∈ C such that

[N,X] = cX

Then, the operator NX applied onto the state |n⟩ gives

NX |n⟩ = XN |n⟩+ [N,X] |n⟩
= Xn |n⟩+ cX |n⟩
= nX |n⟩+ cX |n⟩
= (n+ c)X |n⟩

Thus, either X |n⟩ = 0 or the produced state is an eigenstate of N with an eigenvalue of n+ c (i.e.
X |n⟩ = |n+ c⟩). We thus define X as a ladder operator for N . It is known as a raising ladder
operator if c is real and positive and a lowering operator if c is real and negative. By properties of
the adjoint, if N is a Hermitian operator, it can be shown that[

N,X†
]
= −cX†

and thus, if X is a raising operator, then X† is a lowering operator and vice versa.
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For the simplest and most applicable uses of these ladder operators, let us define S+ to be a raising
ladder operator for Sz with c = +1 and S− to be a lowering ladder operator for Sz with c = −1.
It should be further noted that S+ and S− commute with S2, as they only raise and lower the
projection quantum number ms and not the spin quantum number s. That is to say that it does
not matter which order the operators S+ and S2 are applied in, as either was we receive the same
result.

S+S
2 |s,m⟩ = S2S+ |s,m⟩ = s(s+ 1)a |s,m+ 1⟩

S−S
2 |s,m⟩ = S2S− |s,m⟩ = s(s+ 1)a |s,m− 1⟩

There is one more relation the connects the above operators back to our original Sz

[S+, S−] = 2Sz

which we may find useful in the coming portions.

It stands to reason that S+ and S− may also have some relation to Sx and Sy, although currently
the relationship is unclear. In order to derive what this relation may be, we must presume what
form these two operators must take. To begin, we can assume that our operator only involves Sx
and Sy and no other operators. Since the operators only increase or decrease the projection of the
spin by one quanta, it makes sense that they should have the same units as our operators Sz, Sy,
and Sx. In other words, S+ and S− should be linear in Sx and Sy.

S+ = αSx + βSy

S− = γSx + ηSy

where α, β, γ, η ∈ C. With four unknowns here, we of course need at least four equations to find
S+ and S−.

We can begin with the simple statement that S†
+ = S−. S

†
+ can be written using the form above as

S†
+ = α∗S†

x + β∗S†
y = α∗Sx + β∗Sy

since Sx and Sy are Hermitian observables. Thus, our first two equations are

α∗ = γ, β∗ = η

Then, we can turn to our commutation relations. Our commutation relations with Sz gives us the
following:

[Sz, S+] = [Sz, αSx + βSy] = α [Sz, Sx] + β [Sz, Sy] = iαSy − iβSx = S+ = αSx + βSy

or rather
α = −iβ, β = iα

which are equivalent statements. We can note that the respective commutation relation with S−
reveals similar information, which unfortunately is again redundant.

[Sz, S−] = [Sz, γSx + ηSy] = γ [Sz, Sx] + η [Sz, Sy] = iγSy − iηSx = −S− = −γSx − ηSy

γ = iη, η = −iγ
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We do have one last commutation relation, however, that we can use. Applying what we have
previously suggested that our operators look like, we have

[S+, S−] = [αSx + βSy, γSx + ηSy] = αγ [Sx, Sx] + βγ [Sy, Sx] + αη [Sx, Sy] + βη [Sx, Sy] = 2Sz

(iαη − iβγ)Sz = 2Sz

Combining everything gives us

(iα (−iα∗)− i (iα)α∗) = 2 |α|2 = 2

which then finally gives us that |α| = 1. There still is some ambiguity with the phase of α, which in
turn will define the phase of the remainder of the coefficients. However, this phase is not physically
significant and, thus, we have freedom to pick any phase that we wish. We will then take the
conventional choice which gives α = 1. We then find that our ladder operators are written as
follows

S+ = Sx + iSy

S− = Sx − iSy
Let us then finalize our discussion of the ladder operators by seeing how the are applied upon
our Sz basis states. From our definition of ladder operators in Definition 6.3, we know that the
application of the ladder operators upon an Sz eigenstates gives an Sz eigenstate in which the
projection quantum number has been increased or decreased by one quanta. We then simply know

S+ |s,m⟩ = α |s,m+ 1⟩

S− |s,m⟩ = β |s,m− 1⟩

where α and β are unknown scalars such that α, β ∈ C. We can use our commutation relations and
definition of S+ and S− to find what these scalars may be. We will begin by finding the expectation
value of S+S−.

Example 6.4. Consider the raising and lowering operators for Sz, S+ and S−, as well as some
arbitrary eigenstate of Sz, |s,m⟩. The expectation value of S+S− can be found as

⟨s,m |S+S−| s,m⟩ =
〈
s,m

∣∣∣S†
−S−

∣∣∣ s,m〉
= ⟨s,m |β∗β| s,m⟩
= |β|2 ⟨s,m|s,m⟩ = |β|2

We can then write S+S− in terms of S2 and Sz. Using our expansion of S+ and S−, we have the
following

S+S− = (Sx + iSy) (Sx − iSy)
= S2

x + S2
y + iSySx − iSxSy

= S2
x + S2

y − i [Sx, Sy]
= S2 − S2

z + ℏSz

where ℏ has been included in order to make the units match between terms. Applying the above to
our eigenstate |s,m⟩ gives us

S+S− |s,m⟩ = (S2 − S2
z + ℏSz) |s,m⟩ = ℏ2

(
s (s+ 1)−m2 +m

)
|s,m⟩
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which can be rewritten as ℏ2 (s+m) (s−m+ 1). Once again, we are left with an arbitrary phase
for this scalar coefficient β, but once again this phase are not physically significant so we can choose
our scalar to be real and positive. Therefore, we are left with

β = ℏ
√

(s+m) (s−m+ 1)

Likewise, the coefficient α is found to be

α = ℏ
√
(s−m) (s+m+ 1)

It is important to notice that these coefficients have also ingrained within them the fact that m
cannot be greater than s and cannot be less than −s. That is to say, the following is given:

S+ |s, s⟩ = 0

S− |s,−s⟩ = 0

and we now have a complete pictures of our ladder operators.

We can then define our operators Sx and Sy by referencing the expressions we had found earlier.
We find that

Sx =
1

2
(S+ + S−)

Sy =
1

2i
(S+ − S−)

which fully define their operation onto the Sz eigenstates. Let us revisit this in a moment.

We had previously promised to revisit the possible values for the spin quantum number and pro-
jection quantum number. Let’s do this now.

Example 6.5. Let us begin by considering some arbitrary eigenstate |A,B⟩, where A is the eigen-
value of S2 and B is the eigenvalue of Sz. We can rewrite S2 as

S2 = S2
x + S2

y + S2
z

or rather
S2
x + S2

y = S2 − S2
z

This operator can then be applied onto our eigenstate.

(S2
x + S2

y) |A,B⟩ = (S2 − S2
z ) |A,B⟩

Now, since Sx and Sy are observables, their eigenvalues are real. Thus, the left hand side of our
equation here must have a positive coefficient, or rather that S2 − S2

z must be nonnegative. More
importantly, we must have that |B| ≤

√
A, establishing an upper and lower boundary for B. Let

us then turn our attention to other operators. Consider the raising and lowering operators S+ and
S− for Sz. Remember that S+ and S− are defined such that they increase and decrease the Sz
eigenvalue B by one quanta, respectively. However, we now also know that B is bounded above and
below by the value of A. Thus, let us suppose that this upper value is B+ and this lower value is
B−. Since these are our upper and lower bounds, we have no state whose Sz eigenvalue is higher
than B+ and no state whose Sz eigenvalue is lower than B−. Applying the the raising and lowering
operators onto these states gives us

S+ |A,B+⟩ = 0
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S− |A,B−⟩ = 0

Furthermore, if we apply the raising and lowering operators to the other states, we get

S−S+ |A,B+⟩ = 0

S+S− |A,B−⟩ = 0

Now, as we saw in Example 6.4, we can rewrite these operators in terms of S2 and Sz. We find
that

S−S+ |A,B+⟩ = (S2 − S2
z − Sz) |A,B+⟩ = A−B2

+ −B+ = 0

S+S− |A,B−⟩ = (S2 − S2
z + Sz) |A,B−⟩ = A−B2

− +B− = 0

which can then be combined via subtraction to find the following condition on B+ and B−

(B+ +B−) (B− −B+ − 1) = 0

As we have defined, B+ > B−, so the second term must be negative. Thus, we have that B++B− = 0
or rather that B− = −B+. This gives us the sum of the two numbers, but we can also look at the
difference between B+ and B−. Recall that the spin is quantized and, thus, in order for us to
move from B− to B+, the raising operator must be applied an integer number of times. Thus, the
difference is an integer value, or rather

B+ −B− = 2s

where s ∈ 1
2Z≥0. It subsequently follows from the fact that B− = −B+ that

B+ = s, B− = −s

and the allowable values of B spans all the integer values between, and including, the two above.
We can then apply B+ = s into the equation above to find the eigenvalue of S2

A− s2 − s = 0 ⇒ A = s2 + s = s(s+ 1)

We can pick s to be the quantum number for S2 and define m to be the quantum number for Sz
such that

S2 |s,m⟩ = s (s+ 1) |s,m⟩ for s ∈ 1

2
Z≥0

Sz |s,m⟩ = m |s,m⟩ for − s ≤ m ≤ s and (mi −mj) ∈ Z

Before we finish this section, let us bring up something rather concrete. As we have somewhat
geared up to in this entire formulation, we can represent our operators in terms of matrices. The
general form of these matrices is a bit extreme to do in such a short amount of time. Thus, we
shall focus on one of the most well-known examples of these matrices, the Pauli matrices. These
matrices represent these operators in a spin-12 system. We can find these matrices by analyzing the
behavior of the operators on our states. To begin with, however, we need a representative of our
states.

The most common method of representing these states is an object known as a spinor. A spinor is a
pseudovector or an axial vector, and so remember that while a spinor may look like a vector, it does
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not truly represent one. For spin-12 systems, we only have two states, which we often colloquially
call spin-up (|1⟩) and spin-down (|0⟩). As spinors, we typically write these to be

|1⟩ =
(
1
0

)
, |0⟩ =

(
0
1

)
Now, we defined these states to be eigenstates of Sz and S2, meaning that in this above repre-
sentation, we can simply write Sz and S2 as diagonal matrices where the diagonal entries are the
respective eigenvectors

Sz =
1

2

[
1 0
0 −1

]
→ Sz |1⟩ =

1

2

[
1 0
0 −1

](
1
0

)
=

1

2

(
1
0

)
=

1

2
|1⟩

→ Sz |0⟩ =
1

2

[
1 0
0 −1

](
0
1

)
= −1

2

(
0
1

)
= −1

2
|0⟩

S2 =
1

2

(
1

2
+ 1

)[
1 0
0 1

]
→ S2 |1⟩ = 1

2

(
1

2
+ 1

)[
1 0
0 −1

](
1
0

)
=

1

2

(
1

2
+ 1

)(
1
0

)
=

1

2

(
1

2
+ 1

)
|1⟩

→ S2 |0⟩ = 1

2

(
1

2
+ 1

)[
1 0
0 1

](
0
1

)
=

1

2

(
1

2
+ 1

)(
0
1

)
=

1

2

(
1

2
+ 1

)
|0⟩

Repeating the same for the remaining four operators is slightly more difficult. We can begin by
looking at the raising and lowering operators. We know that S+ |1⟩ = 0 and S− |0⟩ = 0 as these
states are, respectively, the largest and smallest quantities of the projection. Thus, they cannot be
raised or lowered, respectively. The remaining relation is given by our known application of S+ or
S− onto some arbitrary state |s,m⟩

S+ |1⟩ = 0, S+ |0⟩ =

√(
1

2
+

1

2

)(
1

2
− 1

2
+ 1

)
|1⟩ ⇒ S+ =

[
0 1
0 0

]

S− |1⟩ =

√(
1

2
+

1

2

)(
1

2
− 1

2
+ 1

)
|0⟩ , S− |0⟩ = 0 ⇒ S− =

[
0 0
1 0

]

Finally, by using the knowledge that 1
i = −i, we can the use the raising and lowering operators to

derive the matrices for Sx and Sy in this representation. We find the following

Sx =
1

2
(S+ + S−) =

1

2

([
0 1
0 0

]
+

[
0 0
1 0

])
=

1

2

[
0 1
1 0

]

Sy =
−i
2

(S+ − S−) =
−i
2

([
0 1
0 0

]
−
[
0 0
1 0

])
=

1

2

[
0 i
−i 0

]
The matrices are given here are the conventional forms of the spin-12 matrices. They are directly
related to the so called Pauli matrices σj through the following:

Sx =
1

2
σ1, Sy =

1

2
σ2, Sz =

1

2
σ3

and in some cases, the Pauli matrices are used instead of Sx, Sy, and Sz when dealing specifically
with spin-12 systems.
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Note: We could have easily taken a different representation. For example, we could have stated
that

|1⟩ =
(
0
1

)
, |0⟩ =

(
1
0

)
in which case our matrices would change. However, the commutation relations, eigenvalues, eigen-
states, and so on are not defined by the representation of the operator. As a result, these properties
would persist.

6.3 Adding Spin

As we bring this session to a close, we want to note one rather important thing. In the previous
two sections, we had constructed two very important parts for spin. The first is the creation of
the spin operators and Hilbert space. In that section, we defined Sx, Sy, Sz, and S2 as well as
defined two “good” quantum numbers to define our states, which we called s and ms. In the second
section, we discussed the aptly named ladder operators S+ and S− which, respectively, can increase
or decrease the projection quantum number ms of a state. We defined their commutation relations
and showed their connection to the operators Sx and Sy and even demonstrated that they cannot
create an disallowed state.

However, in this entire discussion, there has been one thing that is missing. We have a way for
us to move between different values of the projection quantum number, but do not have a way
to move between different total spin values. Of course, we need to be careful when we consider
this. For any given particle, the total spin value s is a constant of nature. This sole fact makes it
seem strange for there to be such an operator that increases or decreases the total spin quantum
number. This is benefited by the fact that such an operator cannot exist. As stated above in
Definition 6.3, a raising ladder operator for and operator A is one that increases the eigenvalue of
A by some set scalar value c. However, the spacing between the eigenvalues of S2 is not constant
as the eigenvalues are quadratic in s.

Yet, while one may not be able to change the total spin quantum number of a single particle, a
collection of particles may not have the same total spin quantum number as any single particle
in the collection. After all, when we combine two angular momenta in classical mechanics, we do
not expect the total angular momentum to be the same. However, these values do not add simply
in quantum mechanics, even when it comes to our spin values. Unfortunately, the intricacies of
angular momentum/spin addition in quantum mechanics is not found in linear algebra, but rather
can be given from group theory. As such we will not be discussing these intricacies here.

That, however, does not stop us from discussing some properties that can help with spin addi-
tion. Before we dive into quantum mechanics, we can review some portions of angular momentum
in classical mechanics. Like any vector quantity in classical mechanics, the sum of two angular
momentum vectors does not have a magnitude equal to the sum of the magnitudes of the two
individual vectors. That is to say, for two arbitrary angular momentum vectors L⃗1 and L⃗2 and
their sum L⃗tot, the magnitude of L⃗tot behaves as:

∣∣∣L⃗tot∣∣∣
=

∣∣∣L⃗1

∣∣∣+ ∣∣∣L⃗2

∣∣∣ iff L⃗1||L⃗2

̸=
∣∣∣L⃗1

∣∣∣+ ∣∣∣L⃗2

∣∣∣ otherwise
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Yet, while the magnitudes of vector quantities do not add, the components of the quantities do.
Thus, for the same vectors,

Ltot,x = L1,x + L2,x

Ltot,y = L1,y + L2,y

Ltot,z = L1,z + L2,z

regardless of the relative directions of L⃗1 and L⃗2.

Perhaps unsurprisingly, these spin states share some of the same qualities as these classical vectors.
That is, it is not necessarily true that the total spin quantum number of two spin states simply
add, yet the total projection quantum number does. For any two arbitrary Sz eigenstates |s1,m1⟩
and |s2,m2⟩, the combined state |stot,mtot⟩ is such that

stot ̸= s1 + s2

mtot = m1 +m2

Yet, whereas classical vectors, when summed, give a definite vector, these quantum states do not
behave as simply. Any combination of our Sz eigenstates is, instead, a linear combination of po-
tential eigenstates, the coefficients of which are associated with the probability of the sum being in
that given combined state.

It may appear daunting now, as we’ve implied that the states combine somewhat arbitrarily, but do
not forget the rules that we have set out so far. These two conditions dictate two of the restrictions
that are on stot and mtot of the combined eigenstate. We can provide one more restriction on stot
by again looking back at classical mechanics. By looking at these quantities, we know that the
magnitude of the combined vector L⃗tot is bounded above, corresponding to when the two vectors
are parallel, and bounded below, corrsponding to when the two vectors are anti-parallel. In other
words, ∣∣∣L⃗1

∣∣∣− ∣∣∣L⃗2

∣∣∣ ≤ ∣∣∣L⃗tot∣∣∣ ≤ ∣∣∣L⃗1

∣∣∣+ ∣∣∣L⃗2

∣∣∣
where

∣∣∣L⃗1

∣∣∣ > ∣∣∣L⃗2

∣∣∣. The spin quantum number works very similarly as

|s1 − s2| ≤ stot ≤ s1 + s2

and we maintain bounds on stot while conserving mtot.

So long as these two conditions are met, along with our other rules of m and s, the state should be
a possibility for our spin addition. Unfortunately, finding the probabilities and such either requires
an extreme amount of patience and a desire to endlessly perform algebra, or an understanding of
group theory. However, thankfully, the process has been completed by a number of individuals and
has since been recorded in the so called Clebsch-Gordan tables. The remainder of this spin section
is devoted to learning how to read these tables.

To begin, let us determine which table to use. After all, we have been using the plural. The
Clebsch-Gordan tables are divided based on the s values that are being combined. That is, if we
wish to combine the arbitrary states |s1,m1⟩ and |s2,m2⟩ into one state |stot,mtot⟩, we would look
at the s1 × s2 Clebsch-Gordan table. The order of s1 and s2 is not important in the name of the

41



6.3 Adding Spin 6 ANGULAR MOMENTUM IN QM

table and the s1 × s2 table is the same as the s2 × s1 table. As a result, it is common practice to
have s1 ≥ s2. Let us then look at an example.

Let’s take one of the more complicated tables to look at here, specifically the 3
2 ×1 Clebsch-Gordan

table. The table has been replicated here in its most common form:

Each block of the table, denoted here by the thick black border, represents the collection of states
that all have the same total projection quantum number. Each of these blocks are then subdivided
into three areas: the top section representing the total spin states |stot,mtot⟩, the left section repre-
senting the individual projection quantum numbers m1 and m2, and the central states representing
the relative probabilities. Within the top section, the total spin states are represented such that
each column is a state where the top number is stot and the bottom number is mtot. The left section
is given such that each row gives the two projection quantum numbers of the states |s1,m1⟩ and
|s2,m2⟩, where the leftmost number corresponds to s1 and the the rightmost number corresponds
to s2. The central section then gives the probability of a given combination of states (corresponding
to the row) being in a particular total spin state (corresponding to the column), or vice versa.

Reading the table then follows simply. For any two arbitrary states |s1,m1⟩ and |s2,m2⟩, we begin
by finding the s1× s2 table. We then identify the row that has the values of m1 and m2 associated
with our states. The corresponding row can then be read to find the probability of each of the total
spin states that is possible to be in. Let us take an example.

Example 6.6. Consider two spin states
∣∣3
2 ,−

1
2

〉
and |1, 0⟩. Let us find the total spin states. We

already have the 3
2 × 1 table, we simply need to find the −1

2 , 0 row. After identifying it, we read
the total spin states at the top of the column and add in our probabilities. We can see that the
combination has three potential total spin states of

∣∣5
2 ,−

1
2

〉
,
∣∣3
2 ,−

1
2

〉
, and

∣∣1
2 ,−

1
2

〉
. The probabilities

give us that these states combine as follows∣∣∣∣32 , 1,−1

2
, 0

〉
=

√
3

5

∣∣∣∣52 ,−1

2

〉
−
√

1

15

∣∣∣∣32 ,−1

2

〉
−
√

1

3

∣∣∣∣12 ,−1

2

〉
where the initial state is written in the common notation of |s1, s2,m1,m2⟩. Note that the square
roots are included because of the how the probability of a state relates to its amplitude.

The Clebsch-Gordan table can also be used to go the opposite direction as well, with going from
a total spin state to two individual spin states. In order to do this, we not only need the state,
but also need the two spin quantum numbers of the individual states. Otherwise, the process is
relatively similar, albeit in reverse.
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Example 6.7. Consider the spin state
∣∣5
2 ,

1
2

〉
and the spin quantum numbers s1 = 3

2 and s2 = 1.
We will once again use the 3

2 × 1 table, but will now look at the column corresponding to our
respective total spin state. Identifying the column shows us that the three potential individual states
appear to be

∣∣3
2 , 1,

3
2 ,−1

〉
,
∣∣3
2 , 1,

1
2 , 0
〉
, and

∣∣3
2 , 1−

1
2 , 1
〉
, using the notation given in Example 6.6.

The resulting dissolution gives∣∣∣∣52 , 12
〉

=

√
1

10

∣∣∣∣32 , 1, 32 ,−1
〉
+

√
3

5

∣∣∣∣32 , 1, 12 , 0
〉
+

√
3

10

∣∣∣∣32 , 1,−1

2
, 1

〉
Note that since the two individual spin quantum numbers must also be given, it is sometimes given
that the total spin state is of the form |s1, s2; stot,mtot⟩.

This is the simple matter of reading a Clebsch-Gordan table. As we have stated, the intricacies
of this is steeped in group theory, and the true nature of the Clebsch-Gordan coefficients, as they
are aptly named, is found via methods from this practice. However, if one is especially keen or
willing, they can derive these coefficients through the properties of the spin operators and their
respective ladder operators. Doing so is tedious, and a simple example will be given here, but,
more importantly, it only secures one table of coefficients at a time and so the full description of
the Clebsch-Gordan coefficients is left out. Finding the coefficients for certain combinations of s1
and s2 is, however, still a common practice problem given in upper year or even graduate level
quantum mechanics courses.

Example 6.8. For the following example, we will be exploring the addition of two spin-12 particles.
That is, we will be observing s1 = 1

2 and s2 = 1
2 . Furthermore, we will take the common notation

standard of the two particle’s state being written as |s1, s2,m1,m2⟩ and the total spin state being
written as |s1, s2; stot,mtot⟩. To begin this exploration, we will start with the spin state

∣∣1
2 ,

1
2 ,

1
2 ,

1
2

〉
,

or rather the two spin particles each being in the “spin-up” configuration. Recall our conditions of
stot and mtot. That is that the total projection is conserved

mtot = m1 +m2

and that the total spin is bounded

|s1 − s2| ≤ stot ≤ |s1 + s2|

These two conditions tell us that the possible stot values are 0 and 1 and that for the given state,
with the two spin particles being in the spin-up configuration, the total projection is mtot = 1. Since
mtot cannot be equal to 1 if stot = 0, we only have one possibility for the given two spin particle
state. As a result ∣∣∣∣12 , 12 , 12 , 12

〉
=

∣∣∣∣12 , 12; 1, 1
〉

The same logic can be applied to find∣∣∣∣12 , 12 ,−1

2
,−1

2

〉
=

∣∣∣∣12 , 12; 1,−1
〉

From here, we can apply some ladder operators. Suppose we increase or decrease the total projection
of our states. As we have previously stated, we need our total projection to be conserved. However,
we cannot increase or decrease the projection of each of the two particles by half a quanta, doing
so is prohibited by quantum mechanics. We also cannot do so be two, as if we decrease one of our
particles by two, we would have to increase the other by one which is forbidden since m is bounded
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by s (or the same with increasing if looking at the all spin-down state). Thus, if we decrease the
projection of the total state, we can either decrease the projection m1 and do nothing to m2 or vice

versa. To use our operators, let us first define operators by which particle they act on. Let S
(1)
+

and S
(1)
− be the ladder operators for s1 and m1 and S

(2)
+ and S

(2)
− be the ladder operators for s2 and

m2. Let S
(tot)
+ and S

(tot)
− be the ladder operators for stot and mtot. Finally, let I(1) and I(2) be the

identity operators for s1 and s2, respectively. Then we can write the total ladder operators in terms
of the individual ladder operators

S
(tot)
+ = S

(1)
+ I(2) + I(1)S

(2)
+

S
(tot)
− = S

(1)
− I(2) + I(1)S

(2)
−

Applying this to our previous states gives us:

S
(tot)
−

∣∣∣∣12 , 12; 1, 1
〉

=

∣∣∣∣12 , 12; 1, 0
〉

=
(
S
(1)
− I(2) + I(1)S

(2)
−

) ∣∣∣∣12 , 12 , 12 , 12
〉

=

∣∣∣∣12 , 12 ,−1

2
,
1

2

〉
+

∣∣∣∣12 , 12 , 12 ,−1

2

〉
Keeping in mind that our state needs to be normalized then gives us the following:∣∣∣∣12 , 12; 1, 0

〉
=

√
1

2

∣∣∣∣12 , 12 ,−1

2
,
1

2

〉
+

√
1

2

∣∣∣∣12 , 12 , 12 ,−1

2

〉
which is unique up to a phase. Following our previous phase conventions, we have picked this
phase such that both of our coefficients are positive and real. This then gives us four of our
six coefficients. Finding the last two requires a bit more ingenuity. First, we can note that
each of these coefficients go either way. That is to say that ⟨s1, s2,m1,m2 |s1, s2; stot,mtot ⟩ =
⟨s1, s2; stot,mtot |s1, s2,m1,m2 ⟩. As such, we have∣∣∣∣12 , 12 ,−1

2
,
1

2

〉
=

√
1

2

∣∣∣∣12 , 12; 1, 0
〉
+ C1

∣∣∣∣12 , 12; 0, 0
〉

∣∣∣∣12 , 12 , 12 ,−1

2

〉
=

√
1

2

∣∣∣∣12 , 12; 1, 0
〉
+ C2

∣∣∣∣12 , 12; 0, 0
〉

Now, we have written all possible states here and we must have the our state is normalized. Thus,
we can easily see that |C1| = |C2| = 1

2 . However, we run into a problem if we make both of these
coefficients 1

2 . Namely that we do not maintain orthogonality and we see that〈
1

2
,
1

2
,−1

2
,
1

2

∣∣∣∣12 , 12 , 12 ,−1

2

〉
= 1

which is quite a problem. We cannot change the magnitudes as they are the only way our equations
currently work out. However, we have one degree of freedom which is phase. In order to achieve

this, we must have either C1 or C2 be −
√

1
2 . It is recommended that one verifies this in their own

time using our choice of coefficients for
∣∣1
2 ,

1
2 ; 1, 0

〉
. As such, let us take C2 = −1

2 , another common
convention that is used. Once we have this, all of our coefficients are given∣∣∣∣12 , 12 , 12 , 12

〉
=

∣∣∣∣12 , 12; 1, 1
〉
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∣∣∣∣12 , 12 ,−1

2
,
1

2

〉
=

√
1

2

∣∣∣∣12 , 12; 1, 0
〉
+

√
1

2

∣∣∣∣12 , 12; 0, 0
〉

∣∣∣∣12 , 12 , 12 ,−1

2

〉
=

√
1

2

∣∣∣∣12 , 12; 1, 0
〉
−
√

1

2

∣∣∣∣12 , 12; 0, 0
〉

∣∣∣∣12 , 12 ,−1

2
,−1

2

〉
=

∣∣∣∣12 , 12; 1,−1
〉

And the table for 1
2 ×

1
2 may be completed.
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