
Debris Model Documentation

This documentation explains the code (and models it uses) for the satellite-
debris model. Written by Justin Lawrence (lawren17@student.ubc.ca). Last
updated 07/09/2022.

1 JASON N-Cell Model

The models used in this project are all built on the following variant of one
produced by JASON [1]. It’s recommended that you read this section before
continuing, even if you have experience with the JASON model.

1.1 JASON Model

The base model for the evolution of the orbital debris system was taken from
a JASON report [1] on the topic, and models the evolution in a ≈ 25km
orbital band. It has variables

S : number of live satellites

D : number of derelict satellites

N : number of catastrophically lethal debris

(see section 5.1 for details on the types of debris) and constant parameters

λ : satellite launch rate

∆t : mean satellite lifetime

σ : satellite cross-section

v : relative collision speed

δ : ratio of density of non-catastrophic to catastrophic lethal debris

α : fraction of collisions that a live satellite fails to avoid

P : post-mission disposal probability

τ : atmospheric drag lifetime

N0 : number of catastrophic debris fragments from a collision

V : volume of the spherical shell

Default values for these constants are given in [1], and are generally kept
unless otherwise noted. The relative collision speed is calculated based on

1

the altitude of the band as specified in section 4.3. The continuous model is
then given as

Ṡ = λ− S/∆t− (δ + α)nσvS (1)

Ḋ = (1− P)S/∆t+ δnσvS − nσvD −D/τ (2)

Ṅ = nσvN0(αS +D) + n0V/τ −N/τ (3)

where n = N+D/2
V (the origin of the factor of 1/2 is unclear, and this factor

is not carried forwards to the models in later sections), and n0 = n(t = 0).

1.2 Continuous N-Cell Extension

For the purposes of this documentation, we refer to an atmospheric layer
as a cell. The JASON model only accounts for one atmospheric band. To
expand this to n atmospheric bands, we look at the evolution of the vectors

xi =

Si

Di

Ni

Ci

where Si, Di, Ni are the number of live satellites, derelict satellites, and
catastrophic debris in the ith shell. Ci is a count of the total number of
collisions that occur in the shell. Shells are numbered from lowest to highest
elevation, and there’s assumed to be no gap between bands. The derived
model is then dxi

dt = f(xi) + g(xi+1), where

f(xi) =

λi − Si/∆ti − (δi + αi)niσiviSi

(1− Pi)Si/∆ti + δiniσiviSi − niσiviDi −Di/τi
niσiviN0i(αiSi +Di)−Ni/τi
(δi + αi)niσiviSi + niσiviDi

 (4)

As can be seen in the indices, each shell is allowed to have its own values
for the constant parameters (in fact the decay lifetime is determined based
on the altitude of the shell, see section 4). This is simply the JASON model
less the higher altitude debris moving down, which will be handled in g. For
g, there are two cases. If i = n (xn+1 doesn’t actually exist, but given the
g here that’s not a problem), then we simply have

g(xi+1) =

0
0

n0iVi/τi
0

 (5)

2

essentially, we make the same approximation as the JASON model. If i ̸= n,
we can actually use the number of derelicts and catastrophic debris coming
in from the above shell via orbital decay to get

g(xi+1) =

0

Di+1/τi+1

Ni+1/τi+1

0

 (6)

2 Minimal Fractional Table Model

The fractional table model is a continuous model built on the N-Cell JASON
model, and extending it to include multiple satellite types, explosions, rocket
bodies, and other factors. This section assumes you’ve read the section 1.

2.1 Model Parameters

2.1.1 Satellites

Unlike the previous N-Cell extension, not all satellites in a cell are assumed
to have the same properties. In every cell, we keep track of a list of satellite
types (the same types being tracked in all cells). For each satellite type in

3

each shell we keep track of

S : number of live satellites

D : number of derelict satellites

λ : satellite launch rate into that shell

∆t : mean live satellite lifetime

σ : satellite cross-section

ms : satellite mass

A/m : satellite area-to-mass ratio

αS : fraction of collisions that a live satellite fails to avoid with another live satellite

αD : fraction of collisions that a live satellite fails to avoid with a derelict

αN : fraction of collisions that a live satellite fails to avoid with trackable debris

αR : fraction of collisions that a live satellite fails to avoid with rocket bodies

P : post-mission disposal probability

τ : atmospheric drag lifetime

C : fit constant for explosions, as defined in section 5.1

EL : the number of live satellites (out of a population of 100) that explode in 1yr

ED : the number of derelict satellites (out of a population of 100) that explode in 1yr

S,D are the parameters being tacked over time, while the others are gen-
erally constant, user chosen parameters. The exception to this is τ , which
is updated periodically based on the current atmospheric conditions (see
section 4). If we assume that satellites don’t explode, then the value of C is
irrelevant. As a bit of clarification, ∆t is the mean amount of time it takes
for a live-satellite to begin to de-orbit (removing it from the system).

2.1.2 Rocket Bodies

Like for satellites, in each cell we keep track of a list of rocket body types
(the same types being tracked in all cells). All rocket bodies are treated like
discarded or expended stages, and hence treated like a derelict satellite. For

4

every rocket body type we keep track of

R : number of rocket bodies

λ : rocket body launch rate

σ : rocket body cross-section

mrb : rocket body mass

A/m : rocket body area-to-mass ratio

τ : atmospheric drag lifetime

C : fit constant for explosions, as defined in section 5.1

ER : the number of rocket bodies (out of a population of 100) that explode in 1yr

where here R is tracked over time, and the other parameters are user-defined.
τ is calculated periodically using the atmospheric model in section 4.

2.1.3 Debris

Unlike the JASON model, the fractional table model attempts to track all
lethal debris, both catastrophic and non-catastrophic. To this end, debris is
binned by its characteristic length LC and area-to-mass ratio A/m, resulting

in a 2D matrix of debris
←→
N for each cell. It’s assumed that debris with

LC ≥ 10cm is ”trackable” by satellite or Earth-based systems, and hence
can be avoided, while smaller debris cannot. A separate decay lifetime is τi,j
is calculated for the debris of each bin in each cell, using the average A/m
of that bin and the atmospheric model in section 4. Binning is done using a
linear logarithmic scale for both LC and A/m, and average values are also
calculated logaritmically. Generally, the range of log10 (A/m) values is taken
to be −2 to 1, as this was found to contain effectively all debris output from
collisions and explosions. The range of LC values is taken to be 1mm to
1m. Debris larger than 1m is exceedingly unlikely for collisions, and debris
smaller than 1mm is assumed to be too small to be lethal.

2.1.4 Discrete Events

Finally, each cell also has a list of discrete events that occur in the cell. These
can generally change anything about the cell (amount of satellites, rocket
bodies, debris, etc.), and either occur with a specific frequency of at specific
times. These are meant to represent things like anti-satellite weapons tests.

5

2.2 Model Description

2.2.1 Rates of Change

Let Si,j be the amount of live satellites in the ith cell of the jth type, and
define Di,j , Ri,j similarly. The other parameters for satellites and rocket

bodies are indexed in a similar manner. Let
←→
N i,j,k be the amount of debris

in the ith cell in the (j,k)th bin. For collisions between satellites/rocket
bodies with cross sections σj , σk, we take the collision cross-section to be

σj,k = σj + σk + 2
√
σjσk (7)

which is the correct result if both objects are roughly spherical. Following
the example of the JASON model, the rate of collision between live satellites
would be

dRSSi,j,k =
αSjαSkσj,kviSi,jSi,k

Vi
(8)

The rate of collisions between live satellites of type j and derelict satellites
of type k would be

dRSDi,j,k =
αDjσj,kviSi,jDi,k

Vi
(9)

The rate of collisions between derelict satellites of type j and k would be (as
derelicts cannot avoid each other)

dRDDi,j,k =
σj,kviDi,jDi,k

Vi
(10)

For the purposes of collisions, rocket bodies behave in the same manner as
derelict satellites. Hence the rate of collisions between live/derelict satellites
of type j and rocket bodies of type k would be

dRSRi,j,k =
αRjσj,kviSi,jRi,k

Vi
(11)

dRDRi,j,k =
σj,kviDi,jRi,k

Vi
(12)

Finally, the rate of collisions between rocket bodies of type j and k would be

dRRRi,j,k =
σj,kviRi,jRi,k

Vi
(13)

6

Similarly, we can get that the rate of collisions between satellites (live,
derelict) and rocket bodies of type j with debris from bin (k, l) would be

dRSi,j,k,l =

αNjσjviSi,j

←→
N i,k,l

Vi
LC ≥ 10cm

σjviSi,j
←→
N i,k,l

Vi
LC < 10cm

(14)

dRDi,j,k,l =
σjviDi,j

←→
N i,k,l

Vi
(15)

dRRi,j,k,l =
σjviRi,j

←→
N i,k,l

Vi
(16)

The rate of explosions of satellites (live/derelict) of type j in the ith cell is
given by

dESi,j = ELj
Si,j

100
(17)

dEDi,j = EDj
Di,j

100
(18)

and similarly for rocket bodies

dERi,j = ERj
Ri,j

100
(19)

Let τD represent the decay lifetime of derelict satellites, τR rocket bodies,
and τ debris. Then following the JASON model the rate at which dere-
licts/rocket bodies decay out of a shell is given by

KDi,j =
Di,j

τDi,j
(20)

KRi,j =
Ri,j

τRi,j
(21)

Similarly, the rate of decay of debris in the ith cell and (j,k)th bin is

KNi,j,k =

←→
N i,j,k

τi,j,k
(22)

Let S be the set of all indices for satellite types, R be the set of all indices
for rocket body types, N be the set of all indices for debris bins, let ζ be a
factor equal to 1 if a collision is catastrophic and zero otherwise (the logic

7

for this decision can be found in section 5.1), and let ζ ′ be the opposite of
ζ. Then it follows from the NCell JASON model that

dSi,j

dt
= λi,j−

Si,j

∆ti,j
−2dRSSi,j,j−

∑
k∈S,k ̸=j

dRSSi,j,k−
∑
k∈S

dRSDi,j,k−
∑
k∈R

dRSRi,j,k

−
∑

(k,l)∈N

dRSi,j,k,l − dESi,j (23)

For derelicts we have that

dDi,j

dt
= (1−Pi,j)

Si,j

∆ti,j
+KDi+1,j+

∑
(k,l)∈N

ζ ′j,k,ldRSi,j,k,l−KDi,j−
∑
k∈S

dRSDi,k,j

−
∑

k∈S,k ̸=j

dRDDi,j,k−2dRDDi,j,j−
∑
k∈R

dRDRi,j,k−
∑

(k,l)∈N

ζj,k,ldRDi,j,k,l−dEDi,j

(24)

where KDi+1,j = 0 for the top cell. Similarly, we get for rocket bodies that

dRi,j

dt
= λRi,j +KRi+1,j −KRi,j −

∑
k∈S

dRSRi,k,j −
∑
k∈S

dRDRi,k,j

−
∑

k∈R,k ̸=j

dRRRi,j,k − 2dRRRi,j,j −
∑

(k,l)∈N

ζj,k,ldRRi,j,k,l − dERi,j (25)

where KRi+1,j = 0 for the top cell, and λR is the rate of rocket bodies being
launched. Let Ni,j,k() be a function which computes the rate of debris being
generated in the ith cell and (j,k)th bin by a rate of collisions/explosions,
which is generally obtained by multiplying the rate with the correct proba-
bility table. For details, see sections 2.2.2-2.2.4. Let H be the set of all cell

8

indices. Then we’d have that

d
←→
N i,j,k

dt
= KNi+1,j,k+

∑
l∈H

(∑
m∈S

(∑
n∈S

Ni,j,k(dRSDl,m,n)+

max (S)∑
n=m

(Ni,j,k(dRSSl,m,n)

+Ni,j,k(dRDDl,m,n))+
∑
n∈R

(Ni,j,k(dRSRl,m,n)+Ni,j,k(dRDRl,m,n))+
∑

(n,o)∈N

(Ni,j,k(dRSl,m,n,o)

+Ni,j,k(dRDl,m,n,o))+Ni,j,k(dESl,m)+Ni,j,k(dEDl,m)
)
+
∑
m∈R

(
Ni,j,k(dERl,m)

+

max (R)∑
n=m

Ni,j,k(dRRRl,m,n)+
∑

(n,o)∈N

Ni,j,k(dRRl,m,n,o)
))
−KNi,j,k−

∑
l∈S

(dRSi,l,j,k+dRDi,l,j,k)

−
∑
l∈R

dRRi,l,j,k (26)

where indices are sometimes started short (i.e. the n = m lines) to avoid
double counting. For the top cell, it’s assumed that KNi+1,j,k = KNi,j,k(t =
0) or zero, it’s up to whoever runs the model.

2.2.2 Calculating the Probability Tables

The probability table exploits something fundamental from the NASA breakup
model [2]. Namely, that the random draws for characteristic length, area-
to-mass ratio, and ejection velocity of the debris generated by a collision or
explosions are only dependent on:

1. Whether the debris is generated by a collision or explosion.

2. Whether it’s a satellite or rocket body involved.

Hence, for each cell, we can pre-compute four probability tables representing
the probability that a generated piece of debris from that cell (from either
a satellite or rocket body in either a collision or explosion) has certain final
altitude, characteristic length, and cross section ranges.

For any given initial and final shell, we use the vis-viva equation

v2 = GM
(2
r
− 1

a

)
(27)

with the current orbital radius r, and range of semi-major axes inside the
shell (i.e. range of valid a values) to compute the range of final velocities

9

for debris going into the shell. In the above equation, M is the mass of
the Earth. If we call the final velocity v′, the pre-collision orbital velocity
v0 (assuming a circular orbit in the centre altitude of the shell), and the
ejection velocity ∆v, then we get for any particular direction that

v′2 = (v0+sin (θ) cos (ϕ)(∆v))2+sin2 (θ) sin2 (ϕ)(∆v)2+cos2 (θ)(∆v)2 (28)

(see section 5.2.3), where since we’ve assumed a circular orbit

v0 =

√
GM

r
(29)

where G the gravitational constant. Equation (28) can be put into the much
more simplified form

v′2 = v20 + 2v0(∆v) sin (θ) cos (ϕ) + (∆v)2

which has the solutions

∆v = −v0 sin (θ) cos (ϕ)±
√

v20 sin
2 (θ) cos2 (ϕ)− (v20 − v′2) (30)

where of course we place the restriction that ∆v ≥ 0. We’ll come back to
this equation in a bit. For now, it suffices to note that for any given direction
and v′, we can compute the values of ∆v for which v′ has the desired value.
Hence, since we have a PDF for ν = log10(∆v), we can define a PDF for v′.

The procedure for calculating a given table is then as follows. Let p be a
PDF (probability distribution) and P the corresponding CDF (cumulative
distribution). Pick an initial shell, and call it the nth shell. Pick a final shell,
and call it the ith shell. Let vi,min, vi,max be the range of final velocities for
which debris ends up in the ith shell. Then for any given direction (θ, ϕ),
we’d clearly have that

T [n, i, j, k] =

∫ Lj+1

Lj

∫ χk+1

χk

∫ vi,max

vi,min

p(L)p(χ|L)p(v′|χ, θ, ϕ)dv′dχdL (31)

where T is the table, characteristic length and area-to-mass ratio are in-
tegrated from one bin edge to the next, and χ = log10(A/M). Actually
computing this would be quite slow, so we take the following approximation

T [n, i, j, k] = (P (Lj+1)−P (Lj))(P (χj+1|L∗)−P (χj |L∗))(P (vi,max|L∗, χ∗)−P (vi,min|L∗, χ∗))
(32)

10

where L∗, χ∗ are the (logarithmically) averaged values of L, χ in the bin
respectively. We remove the θ, ϕ dependence by integrating over all direc-
tions, using a Monte-Carlo method to with points uniformly chosen over the
sphere using a Fibbonacci spiral method.

The final thing to look at is the specifics of the cumulative probability distri-
bution for v′. Taking a look at the equation (30), we can see three possible
cases.

Case 1 : The equation has no real, positive solutions. Then the desired final
velocity is impossible, so since lowering v′ only makes the the larger solution
for ∆v smaller, the cumulative probability is zero.

Case 2 : The equation as one real positive root (which must be the larger
root). Then if the real root is ∆vmax, the cumulative probability is just
P (∆vmax) (the cumulative probability in terms of ∆v, as is described in
section 5.1).

Case 3 : The equation has two real positive roots. Lowering v′ makes the
larger solution smaller and the smaller solution larger, so any ∆v between
the two solutions is valid. Hence, if the smaller solution is ∆vmin, we return
P (∆vmax)− P (∆vmin).

It’s also good to note that occasionally the vis-viva equation will result in
a value v′2 < 0, which is clearly impossible. If v2min < 0 and v2max ≥ 0, we
take vmin = 0. If v2max < 0 as well, we just say that this shell cannot be
reached by debris. Note that since some of the debris will generally escape
the system, the table may not be normalized.

2.2.3 Handling Satellite-Rocket Body Collisions

In the previous section, we assumed that a collision involves either a satellite
or a rocket body, but not both. This of course begs the question of what to do
if a satellite collides with a rocket body. The NASA breakup model doesn’t
prescribe anything for this, so we had to come up with another method. The
method used is to treat the collision as two separate, catastrophic collisions,
one between the satellite and a negligible piece of debris and one between the
rocket body and a negligible piece of debris. This has no explicit physical or
theoretical motivation, and was simply chosen because it seems reasonable.

11

2.2.4 Using the Probability Table

In order to use a probability table to compute the Ni,j,k() function, we use
the following procedure

1. Calculate the total amount of debris generated by the event using
equation (57) or (60), depending on the event type and using the
parameters of the objects involved in the collision.

2. Take this number, and multiply by T [n, i, j, k] using the correct table
for that event type.

2.2.5 Model Assumptions

This section lists some important assumptions made by the model:

1. Launched bodies immediately reach their target altitude for orbit.

2. Satellites de-orbit immediately, with a negligible chance of collision.

3. All objects are in a roughly circular orbit.

4. Objects from outside the region of atmosphere analyzed have a negli-
gible impact on the system.

5. Satellites, rocket bodies, and debris are homogeneously spread out in
each cell.

2.3 Implementation

2.3.1 Program Structure

The overall structure of the program, written in Python3, consists of 3 main
classes.

Event (and derived classes) : Contains all the information about a given
discrete event, as well as the function to simulate the event occurring.

Cell : Represents one section of the atmosphere. Contains all relevant infor-
mation about that layer (volume, width, altitude, etc.), the all information
on the satellites and rocket bodies of every type for that layer, and the
list of all discrete events occurring in that layer. Also contains a function
for calculating the rates of change/collisions/explosions for satellites, rocket

12

bodies, and debris in the layer.

NCell : Contains a list of Cells representing the entire atmosphere. Con-
tains functions for running the simulation, calculating probability tables,
functions to simulate collisions and explosions, and generally manages all of
the Cells.

Generally, only NCell and Event ever need to be interacted with by the user.
NCell is capable of creating its own Cell instances based on its initializing
arguments, but since discrete events are handled on a case-by-case basis
Event instances must be given to it by the user.

2.3.2 Implementing Collisions/Explosions Efficiently

To avoid unnecessary repeated calculations, the rate of collisions/explosions
of each type is counted up fully for each cell before simulating the collisions.
For example, take a collision type between satellite types j, k in the ith
cell. These would all have the same average number of debris and debris
distribution, so we count up the total amount of collisions of this type (i.e.
collisions between live and derelict) satellites of these types, then simply
multiply this rate by the corresponding distribution.

2.3.3 Implementing Discrete Events

Discrete events are treated as happening (and effecting the system) instan-
taneously, and hence return changes in relevant values (such as the amount
of debris, or a discrete number of collisions) rather than as rates of change.
Events are simulated after a time step is run, and so don’t have to be undone
for adaptive time steps.

2.3.4 Numerical Methods

There are two numerical solution methods included in NCell. One is just a
basic Euler method. The other is a predictor-corrector (PC) method with an
adaptive time step, which uses a 2-step Adams-Bashforth method (AB(2)
method) along with the trapezoid method. The AB(2) method, with an
adaptive time step, for some general differential equation y′(t) = f(t,y), is
[3]

yn+2 = yn+1 +
1

2
hn+1

[(
2 +

hn+1

hn

)
y′n+1 −

hn+1

hn
y′n

]
(33)

13

where hi = ti+1 − ti. The trapezoid rule is given by [3]

yn+2 = yn+1 +
1

2
hn+1(y

′
n+2 + y′n+1) (34)

The general form of PC methods used here is also given in [3]. An estimate
of the error ϵ of this method is given by

ϵ = −1

3

hn+1

hn+1 + hn
(yn+2 − y

[0]
n+2) (35)

where y
[0]
n+2 is the value of yn+2 predicted by the AB(2) method. If |ϵ| ≤ tol,

an arbitrary tolerance, then we accept the step and move on. If not, we retry
the step. In either case, we take the new h to be [3]

hnew = hn+1

∣∣∣tol
ϵ

∣∣∣ 13 (36)

(note that this equation was technically derived for usage with just a trape-
zoid method, but it still seems reasonable to use in this case). In the im-
plementation of this method, a tolerance of 1 was found to be reasonable in
most cases, although it occasionally results in time steps that are slightly
too large at the start.To prevent the time step from getting too large, an ar-
bitrary minimum/maximum time step (adjustable by the user) were added
as well.

The AB(2) method needs 2 sets of initial conditions, whereas we only have
1. The second set is generated by the Euler method using the minimum
time step. In general, the Euler method is less accurate and stable than
the PC method, along with not having an adaptive time step, so we highly
recommend that you use the PC method instead.

2.3.5 Saving/Loading Data

All the relevant data of a NCell system can be saved, and a new NCell object
can be generated using that data with the save and load methods. Events
cannot be saved. See code docstrings for more details.

3 Improved Fractional Table Models

There are two improved versions of the basic fractional table model that we
created, and both are outlined here.

14

3.1 De-orbit/No-Ascent Fractional Table Model

3.1.1 Model Description

The de-orbit variant of the fractional model takes into account the time it
takes for satellites to de-orbit and burn up in the atmosphere (removing the
second assumption of the basic fractional model). To that end, we add the
following two satellite parameters to track

Sd : number of live de-orbiting satellites

τdo : live satellite de-orbiting lifetime

Sd is tracked over time and τdo is generally a user-defined parameter. We
then also need to calculate the rate at which de-orbiting satellites are col-
liding with other bodies, giving (using the same notation as the previous
section)

dRSSd i,j,k =
αSjαSkσj,kviSi,jSdi,k

Vi
(37)

dRSdSd i,j,k =
αSjαSkσj,kviSdi,jSdi,k

Vi
(38)

dRSdDi,j,k =
αDjσj,kviSdi,jDi,k

Vi
(39)

dRSdRi,j,k =
αRjσj,kviSdi,jRi,k

Vi
(40)

dRSd i,j,k,l =

αNjσjviSdi,j

←→
N i,k,l

Vi
LC ≥ 10cm

σjviSdi,j
←→
N i,k,l

Vi
LC < 10cm

(41)

We also need to calculate the rate at which de-orbiting satellites explode,
which is given by (we classify de-orbiting satellites as a type of live satellite
for this purpose)

dESd i,j = ELj

Sdi,j

100
(42)

Finally, we account for the fact that de-orbiting satellites exit each cell at a
rate of

KSd i,j =
Sdi,j

τdoi,j
(43)

15

Taking all of this into account, our updated rates of change are then

dSi,j

dt
= λi,j−

Si,j

∆ti,j
−2dRSSi,j,j−

∑
k∈S,k ̸=j

dRSSi,j,k−
∑
k∈S

dRSSd i,j,k−
∑
k∈S

dRSDi,j,k

−
∑
k∈R

dRSRi,j,k −
∑

(k,l)∈N

dRSi,j,k,l − dESi,j (44)

for S and

dSdi,j

dt
= Pi,j

Si,j

∆ti,j
+KSd i+1,j−KSd i,j−

∑
k∈S

dRSSd i,k,j−2dRSdSd i,j,j−
∑

k∈S,k ̸=j

dRSdSd i,j,k

−
∑
k∈S

dRSdDi,j,k −
∑
k∈R

dRSdRi,j,k −
∑

(k,l)∈N

dRSd i,j,k,l − dESd i,j (45)

for Sd, where KSd i+1,j = 0 for the top cell. We get that

dDi,j

dt
= (1−Pi,j)

Si,j

∆ti,j
+KDi+1,j+

∑
(k,l)∈N

ζ ′j,k,l(dRSi,j,k,l+dRSd i,j,k,l)−KDi,j−
∑
k∈S

dRSDi,k,j

−
∑
k∈S

dRSdDi,k,j−
∑

k∈S,k ̸=j

dRDDi,j,k−2dRDDi,j,j−
∑
k∈R

dRDRi,j,k−
∑

(k,l)∈N

ζj,k,ldRDi,j,k,l−dEDi,j

(46)

where again KDi+1,j = 0 for the top cell. Similarly, for rocket bodies we get

dRi,j

dt
= λRi,j +KRi+1,j −KRi,j −

∑
k∈S

dRSRi,k,j −
∑
k∈S

dRSdRi,k,j

−
∑
k∈S

dRDRi,k,j−
∑

k∈R,k ̸=j

dRRRi,j,k−2dRRRi,j,j−
∑

(k,l)∈N

ζj,k,ldRRi,j,k,l−dERi,j

(47)

16

where KRi+1,j = 0 for the top cell, and λR is the rate of rocket bodies being
launched. Finally, the updated rate of change of debris would be

d
←→
N i,j,k

dt
= KNi+1,j,k+

∑
l∈H

(∑
m∈S

(∑
n∈S

(Ni,j,k(dRSSd l,m,n)+Ni,j,k(dRSDl,m,n)

+Ni,j,k(dRSdDl,m,n))+

max (S)∑
n=m

(Ni,j,k(dRSSl,m,n)+Ni,j,k(dRSdSd l,m,n)+Ni,j,k(dRDDl,m,n))

+
∑
n∈R

(Ni,j,k(dRSRl,m,n)+Ni,j,k(dRSdRl,m,n)+Ni,j,k(dRDRl,m,n))+
∑

(n,o)∈N

(Ni,j,k(dRSl,m,n,o)

+Ni,j,k(dRSd l,m,n,o)+Ni,j,k(dRDl,m,n,o))+Ni,j,k(dESl,m)+Ni,j,k(dESd l,m)+Ni,j,k(dEDl,m)
)

+
∑
m∈R

(
Ni,j,k(dERl,m)+

max (R)∑
n=m

Ni,j,k(dRRRl,m,n)+
∑

(n,o)∈N

Ni,j,k(dRRl,m,n,o)
))
−KNi,j,k

−
∑
l∈S

(dRSi,l,j,k + dRSd i,l,j,k + dRDi,l,j,k)−
∑
l∈R

dRRi,l,j,k (48)

3.1.2 Implementation

The implementation of the de-orbiting variant of the fractional table model is
just an updated version of the same code. The basic structure and methods
are not changed. Implementation remains in Python3.

3.2 Full Fractional Table Model

3.2.1 Model Description

The full fractional model also takes into account the time it takes for satel-
lites to ascend into their target orbits after being launched. To that end, we
add the following three satellite parameters to track

at : target altitude of the satellite

τup : amount of time it takes for an ascending satellite to ascend through a band

τfail : failure lifetime of ascending satellites

Furthermore, λ is no longer associated with a particular shell, as all satellite
types are launched into the bottom shell before ascending to their target

17

altitude. All of these are user-defined parameters. The rate of live satellites
rising is given by

KSi,j =

{ Si,j

τupi,j
if at is above cell i

0 otherwise
(49)

The rate at which live satellites become derelicts/de-orbiting satellites is
also changed, and is now given by

Qi,j =

{ Si,j

τfaili,j
if at is above cell i

Si,j

∆ti
otherwise

(50)

Taking all of this into account, our updated rates of change are then

dSi,j

dt
= KSi−1,j−KSi,j−Qi,j−2dRSSi,j,j−

∑
k∈S,k ̸=j

dRSSi,j,k−
∑
k∈S

dRSSd i,j,k

−
∑
k∈S

dRSDi,j,k −
∑
k∈R

dRSRi,j,k −
∑

(k,l)∈N

dRSi,j,k,l − dESi,j (51)

for S, where KS−1,j = λj and

dSdi,j

dt
= PjQi,j+KSd i+1,j−KSd i,j−

∑
k∈S

dRSSd i,k,j−2dRSdSd i,j,j−
∑

k∈S,k ̸=j

dRSdSd i,j,k

−
∑
k∈S

dRSdDi,j,k −
∑
k∈R

dRSdRi,j,k −
∑

(k,l)∈N

dRSd i,j,k,l − dESd i,j (52)

for Sd, where KSd i+1,j = 0 for the top cell. We get that

dDi,j

dt
= (1−Pj)Qi,j+KDi+1,j+

∑
(k,l)∈N

ζ ′j,k,l(dRSi,j,k,l+dRSd i,j,k,l)−KDi,j−
∑
k∈S

dRSDi,k,j

−
∑
k∈S

dRSdDi,k,j−
∑

k∈S,k ̸=j

dRDDi,j,k−2dRDDi,j,j−
∑
k∈R

dRDRi,j,k−
∑

(k,l)∈N

dRDi,j,k,l−dEDi,j

(53)

where again KDi+1,j = 0 for the top cell. The resulting rate equations for
rocket bodies and debris are unchanged.

3.2.2 Implementation

Again, the implementation of the full variant of the fractional table model is
just an updated version of the same code. The basic structure and methods
are not changed. Implementation remains in Python3.

18

4 Atmospheric Model

The model used to calculate atmospheric drag lifetimes is contained in At-
mosphericDevayModels.py, and consists of three main parts.

4.1 Atmospheric Density

Before the atmospheric density, the current solar radiation flux is calculated
using a linear interpolation of the JB2008 solar flux model as compiled by
CIRA-2012 (ADD) in altitude log-space. This leads to three separate cases.

Case 1: The solar flux is ≤ 65 × 10−22W/m2. In this case, simply take a
linear interpolation (in log-space) of the JB2008 total air density model for
low solar activity [4].

Case 2: The solar flux (SF) is such that 65 × 10−22W/m2 < SF ≤ 140 ×
10−22W/m2. Then the air density is calculated via a linear interpolation
of the JB2008 model for both low and medium flux. These two values are
then linearly interpolated using the flux, with a flux of 140 returning only
the medium flux density.

Case 3: 140× 10−22W/m2 < SF ≤ 250× 10−22W/m2. This is the same as
the previous case, but using the JB2008 model for medium and long-term
high flux.

Case 4: SF > 250× 10−22W/m2. This is the same as case 1, but using the
air density model for long-term high solar activity.

4.2 Atmospheric Drag Lifetime

For this calculation, we assume that all objects are on a perfectly circular
orbit around Earth. The drag lifetime characterizes the amount of time an
object spends before its orbit degrades into a lower shell, and is taken to be
the amount of time for the orbit to degrade from the top of the shell to the
bottom. This value is taken as the process is roughly an exponential decay,
so almost all of this time is taken up decaying near the top of the shell (i.e.
this is a worst-case value). The rate of change of the separation a between
an object in circular orbit about the Earth and the centre of the Earth is
given by

ȧ = −CDρatm(a, t)
A

m

√
GMa (54)

19

where CD is the drag coefficient (assumed to be 2.2 by default), ρatm(a, t) is
the density at the given altitude and time, A/m is the area-to-mass ratio of
the object in orbit, and M is the mass of Earth. For a Cell with top altitude
h2 and bottom altitude h1, we look for a tf such that

h1 − h2 =

∫ tf

0
ȧdt (55)

where a(0) = h2. This is done numerically using a simple PC method, with
the predictor being Euler method and corrector the trapezoid method. A
basic adaptive time step is used, taken as

dt = −2 a−Re

ȧn + ȧn+1
k (56)

where Re is the radius of the Earth, and k is an arbitrary factor taken
to be 1/100 by default (this value was found to be good using some test
calculations).

4.3 Collision Velocities

For collisions between objects in a shell, we assume that the orbital planes
have uniformly distributed normal vectors. Then the probability of a col-
lision angle θ ∈ [0, π] is given by sin θ

2 . Assuming that the velocity of the
target object is along the x-axis, the relative velocity would be given by
(where vorb is the orbital velocity in the shell)

v2 = (vorb − vorb cos θ)
2 + (vorb sin θ)

2

So the average velocity is then

⟨v⟩ = vorb
√
2

∫ π

0

√
1− cosθ

sin θ

2
dθ

which evaluates to

⟨v⟩ = 4

3
vorb (57)

4.4 Updating Drag Lifetimes

In the simulations, drag lifetimes are updated with a particular set frequency
since the atmospheric density is time-dependent. Generally, since CIRA-
2012 tabulates monthly values [4], the lifetime is updated once per month.
Furthermore, the initial stage of the solar cycle can effect the result (i.e. we

20

really take ρ(a, t + t0) where t0 is some offset). We start at the arbitrary
first month of the solar cycle as tabulated by [4] by default. For phenomena
taking place over a time period longer than one cycle (12 years), the initial
time in the cycle is likely not that important.

5 Debris Generation Model

Unless otherwise stated, assume all quantities in this section are in standard
SI units.

5.1 NASA Breakup Model

This will be a more broad overview of the model, more specifics are outlined
in the numerical implementation and in the following sources [2,5]. We
characterize debris by two parameters: its characteristic length (the cube
root of the volume) LC , and it’s area-to-mass ration A/M . The number
of pieces of debris with characteristic length of at least Lc generated by a
collision is then given by [2]

N(LC) = 0.1M0.75L−1.71C (58)

where M is a parameter dependent on the type of collision, given by [2]

M =

{
mt +md

mdv
2

2mt
≥ 40[J/g]

mdv
mdv

2

2mt
< 40[J/g]

(59)

where mt,md are the mass of the target and debris in kg, and v is the rel-
ative speed of the satellite and debris in the collision in km/s. As a quick
notation note, we define that a collision is

Catastrophically Lethal if mdv
2

2ms
≥ 40[J/g]

Non-Catastrophically Lethal if mdv
2

2ms
< 40[J/g]

Non-Lethal if the debris is too small to have a discernable effect on the
satellite.

Catastrophically lethal collisions are taken to completely destroy the target,
while non-catastrophically lethal collisions are taken to disable a satellite
(or have little effect on a derelict/rocket body).

21

Using this, we can see that for collisions

P (Lmin ≤ L ≤ LC) =
N(Lmin)−N(LC)

N(Lmin)−N(Lmax)

which equivalently is

P (Lmin ≤ L ≤ LC) =
L−1.71min − L−1.71C

L−1.71min − L−1.71max
(60)

For explosions, we instead have [2]

N(LC) = 6CL−1.6C (61)

the C parameter is generally defined as a function of altitude in [5], to fit
historical data. Since this is more a product of the types of satellites/rockets
launched to each altitude band, and hence not particulairly predictive, we
take C as a free parameter. It’s range is [0.1, 1] [5], with a value of 1 for
rocket upper stages. Either way, we can get that for explosions

P (Lmin ≤ L ≤ LC) =
L−1.6min − L−1.6C

L−1.6min − L−1.6max
(62)

Once an LC has been selected, we define the probability distribution for the
A/M ratio as (for satellites, assuming that LC > 11cm) [2]

DA/M (λc, χ) = αS/C(λc)N(µ
S/C
1 (λc), σ

S/C
1 (λc), χ)+(1−αS/C(λc))N(µ

S/C
2 (λc), σ

S/C
2 (λc), χ)

(63)
where λc = log10(LC), χ = log10(A/M), and N(µ, σ, χ) is the value of
a normal distribution with standard deviation σ and mean µ at χ. The
functions for α, µ, and σ factors are given in [2], and are labeled R/B for
rocket bodies). If we instead assume that LC < 8cm, we get that for both
cases [2]

DA/M (λc, χ) = N(µSOC(λc), σ
SOC(λc), χ) (64)

These integrate to the cumulative distributions

P (χmin ≤ χ∗ ≤ χ) = C

(
αS/C

[
erf
(χ∗ − µ

S/C
1√

2σ
S/C
1

)]∣∣∣χ∗=χ

χ∗=χmin

+(1−αS/C)
[
erf
(χ∗ − µ

S/C
2√

2σ
S/C
2

)]∣∣∣χ∗=χ

χ∗=χmin

)
(65)

and

P (χmin ≤ χ∗ ≤ χ) = C
[
erf
(χ∗ − µSOC

√
2σSOC

)]∣∣∣χ∗=χ

χ∗=χmin

(66)

22

respectively, where C is a normalization factor. For LC ∈ [8cm, 11cm], we
take an interpolation of the two distributions, linear in log-space. Once
we’ve chosen a χ, we get a distribution for the ejection velocity ∆v of the
debris of [2]

D∆v(χ, ν) =

{
N(0.9χ+ 2.9, 0.4, ν) Satellites

N(0.2χ+ 1.85, 0.4, ν) Rocket Bodies
(67)

where ν = log10(∆v). This integrates to the cumulative distribution

P (νmin ≤ ν∗ ≤ ν) = C
[
erf
(ν∗ − (0.9χ+ 2.9)

0.4
√
2

)]∣∣∣ν∗=ν

ν∗=νmin

(68)

for satellites and

P (νmin ≤ ν∗ ≤ ν) = C
[
erf
(ν∗ − (0.2χ+ 1.85)

0.4
√
2

)]∣∣∣ν∗=ν

ν∗=νmin

(69)

for rocket bodies, where C is a normalization factor.

As a quick note, given the characteristic length and A/M of a piece of debris,
we estimate its surface area by [2]

A =

{
0.540424L2

C LC < 0.00167m

0.556945L2.0047077
C LC ≥ 0.00167m

(70)

which allows us to estimate that md = A
A/M .

6 Known Problems

There is one main assumptions of the model which may be of questionable
accuracy, namely that bands are homogeneous. Satellite clusters could in-
stead be launched in a very tight altitude band or tight orbital inclination
band, violating this assumption. Furthermore, when the number of objects
is extremely low, treating its value as continuous becomes less and less ac-
curate. This is a common issue when there’s satellite types with very few
individual objects associated to them, and for debris values. Getting enough
bins to accurately model the debris (usually a 10x10 grid is used) often re-
sults in a large number of debris bins with values < 10−6 or worse. As long
as a rectangular table of debris bins is used there’s no way around this.

23

Tight altitude bands can be compensated for with tight altitude binning,
but this comes at the cost of lower object counts (and hence a less accurate
continuity assumption) and higher computation times. No way is currently
known of accounting for the inclination of orbits without a complete overhaul
of the model, and this would likely require switching to an approach that
tracks discrete objects. The low debris value issue could be fixed by ignoring
the requisite debris bins, but the ignored bins cannot change during the
simulation and care would have to be taken when selecting which bins to
ignore.

7 Works Cited

[1] https://www.nsf.gov/news/special reports/jasonreportconstellations/JSR-
20-2H The Impacts of Large Constellations of Satellites 508.pdf

[2] https://www.sciencedirect.com/science/article/pii/S0273117701004239

[3] Numerical Methods for Ordinary Differential Equation: Initial Value
Problems by D.F. Griffiths and D.J. Higham (2010)

[4] https://spacewx.com/wp-content/uploads/2021/03/chapters 1 3.pdf

[5] https://link.springer.com/book/10.1007/3-540-37674-7

24

	JASON N-Cell Model
	JASON Model
	Continuous N-Cell Extension

	Minimal Fractional Table Model
	Model Parameters
	Satellites
	Rocket Bodies
	Debris
	Discrete Events

	Model Description
	Rates of Change
	Calculating the Probability Tables
	Handling Satellite-Rocket Body Collisions
	Using the Probability Table
	Model Assumptions

	Implementation
	Program Structure
	Implementing Collisions/Explosions Efficiently
	Implementing Discrete Events
	Numerical Methods
	Saving/Loading Data

	Improved Fractional Table Models
	De-orbit/No-Ascent Fractional Table Model
	Model Description
	Implementation

	Full Fractional Table Model
	Model Description
	Implementation

	Atmospheric Model
	Atmospheric Density
	Atmospheric Drag Lifetime
	Collision Velocities
	Updating Drag Lifetimes

	Debris Generation Model
	NASA Breakup Model

	Known Problems
	Works Cited

